IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v8y2019i1p20-d197928.html
   My bibliography  Save this article

A Model for Estimating the Vegetation Cover in the High-Altitude Wetlands of the Andes (HAWA)

Author

Listed:
  • Jorge Soto

    (Agroenergía Ingeniería Genética S.A. Inc., Almirante Lynch 1179, San Miguel, Santiago 8920033, Chile)

  • Celián Román-Figueroa

    (Agroenergía Ingeniería Genética S.A. Inc., Almirante Lynch 1179, San Miguel, Santiago 8920033, Chile)

  • Manuel Paneque

    (Department of Environmental Sciences and Natural Resources, Faculty of Agricultural Sciences, University of Chile, Santa Rosa 11315, La Pintana, Santiago 8820808, Chile)

Abstract

The natural salt meadows of Tilopozo in the hyperarid, Atacama Desert of northern Chile, which are located at approximately 2800 m above sea level, are under pressure from industrial activity, and cultivation and grazing by local communities. In this research, the land surface covered by salt meadow vegetation was estimated from normalized difference vegetation indices (NDVI) derived from Landsat Thematic Mapper (TM), Enhanced Thematic Mapper (ETM+) and Operational Land Imager (OLI) data from 1985 to 2016. The vegetated area of the Tilopozo salt meadows decreased by 34 ha over the 32-year period studied. Multiple regression models of the area covered by vegetation and climate data and groundwater depths were derived on an annual basis, as well as for both the dry and wet seasons and had R 2 values of 83.0%, 72.8% and 92.4% respectively between the vegetated areas modeled and those estimated from remotely sensed data. These models are potentially useful tools for studies into the conservation of the Tilopozo salt meadows, as they provide relevant information on the state of vegetation and enable changes in vegetation in response to fluctuations in climate parameters and groundwater depths to be predicted.

Suggested Citation

  • Jorge Soto & Celián Román-Figueroa & Manuel Paneque, 2019. "A Model for Estimating the Vegetation Cover in the High-Altitude Wetlands of the Andes (HAWA)," Land, MDPI, vol. 8(1), pages 1-17, January.
  • Handle: RePEc:gam:jlands:v:8:y:2019:i:1:p:20-:d:197928
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/8/1/20/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/8/1/20/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Apostolos Gaitanis & Kleomenis Kalogeropoulos & Vassilis Detsis & Christos Chalkias, 2015. "Monitoring 60 Years of Land Cover Change in the Marathon Area, Greece," Land, MDPI, vol. 4(2), pages 1-18, April.
    2. Xia Cui & Cerian Gibbes & Jane Southworth & Peter Waylen, 2013. "Using Remote Sensing to Quantify Vegetation Change and Ecological Resilience in a Semi-Arid System," Land, MDPI, vol. 2(2), pages 1-23, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fullman, Timothy J. & Bunting, Erin L. & Kiker, Gregory A. & Southworth, Jane, 2017. "Predicting shifts in large herbivore distributions under climate change and management using a spatially-explicit ecosystem model," Ecological Modelling, Elsevier, vol. 352(C), pages 1-18.
    2. Cegielska, Katarzyna & Noszczyk, Tomasz & Kukulska, Anita & Szylar, Marta & Hernik, Józef & Dixon-Gough, Robert & Jombach, Sándor & Valánszki, István & Filepné Kovács, Krisztina, 2018. "Land use and land cover changes in post-socialist countries: Some observations from Hungary and Poland," Land Use Policy, Elsevier, vol. 78(C), pages 1-18.
    3. Haiyan Liu & Kangning Xiong & Yanghua Yu & Tingling Li & Yao Qing & Zhifu Wang & Shihao Zhang, 2021. "A Review of Forest Ecosystem Vulnerability and Resilience: Implications for the Rocky Desertification Control," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    4. Justyna Wójcik-Leń & Przemysław Leń, 2021. "Evaluation of the Symmetry of Statistical Methods Applied for the Identification of Agricultural Areas," Land, MDPI, vol. 10(7), pages 1-13, June.
    5. Edith Olmos-Trujillo & Julián González-Trinidad & Hugo Júnez-Ferreira & Anuard Pacheco-Guerrero & Carlos Bautista-Capetillo & Claudia Avila-Sandoval & Eric Galván-Tejada, 2020. "Spatio-Temporal Response of Vegetation Indices to Rainfall and Temperature in A Semiarid Region," Sustainability, MDPI, vol. 12(5), pages 1-18, March.
    6. Narcisa G. Pricope & Andrea E. Gaughan & John D. All & Michael W. Binford & Lucas P. Rutina, 2015. "Spatio-Temporal Analysis of Vegetation Dynamics in Relation to Shifting Inundation and Fire Regimes: Disentangling Environmental Variability from Land Management Decisions in a Southern African Transb," Land, MDPI, vol. 4(3), pages 1-29, July.
    7. John Tyler Fox & Mark E. Vandewalle & Kathleen A. Alexander, 2017. "Land Cover Change in Northern Botswana: The Influence of Climate, Fire, and Elephants on Semi-Arid Savanna Woodlands," Land, MDPI, vol. 6(4), pages 1-23, October.
    8. Kurowska, Krystyna & Kryszk, Hubert & Marks-Bielska, Renata & Mika, Monika & Leń, Przemysław, 2020. "Conversion of agricultural and forest land to other purposes in the context of land protection: Evidence from Polish experience," Land Use Policy, Elsevier, vol. 95(C).
    9. Jingzhong Li & Xiao Xie & Bingyu Zhao & Xiao Xiao & Bing Xue, 2022. "Spatio-Temporal Processes and Characteristics of Vegetation Recovery in the Earthquake Area: A Case Study of Wenchuan, China," Land, MDPI, vol. 11(4), pages 1-17, March.
    10. S. Muwanga & R. N. Onwonga & S. O. Keya & E. Komutunga, 2024. "Influence of Agro-pastoral Activities on Land Use and Land Cover Change in Karamoja, Uganda," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 12(9), pages 266-266, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:8:y:2019:i:1:p:20-:d:197928. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.