IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v2y2013i3p328-350d27247.html
   My bibliography  Save this article

Multivariate Analysis of Rangeland Vegetation and Soil Organic Carbon Describes Degradation, Informs Restoration and Conservation

Author

Listed:
  • Devan Allen McGranahan

    (Rangeland Ecology Lab, Department of Natural Resource Ecology and Management, Iowa State University, Ames, IA 50011, USA)

  • David M. Engle

    (Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK 74078, USA)

  • Samuel D. Fuhlendorf

    (Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK 74078, USA)

  • James R. Miller

    (Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA)

  • Diane M. Debinski

    (Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50010, USA)

Abstract

Agricultural expansion has eliminated a high proportion of native land cover and severely degraded remaining native vegetation. Managers must determine where degradation is severe enough to merit restoration action, and what action, if any, is necessary. We report on grassland degraded by multiple factors, including grazing, soil disturbance, and exotic plant species introduced in response to agriculture management. We use a multivariate method to categorize plant communities by degradation state based on floristic and biophysical degradation associated with historical land use. The variables we associate with degradation include abundance of the invasive cool-season grass, tall fescue ( Schedonorus phoenix (Scop.) Holub); soil organic carbon (SOC); and heavy livestock grazing. Using a series of multivariate analyses (ordination, hierarchical clustering, and multiple regression), we identify patterns in plant community composition and describe floristic degradation states. We found vegetation states to be described largely by vegetation composition associated primarily with tall fescue and secondarily by severe grazing, but not soil organic carbon. Categorizing grasslands by vegetation states helps managers efficiently apply restoration inputs that optimize ecosystem response, so we discuss potential restoration pathways in a state-and-transition model. Reducing stocking rate on grassland where grazing is actively practiced is an important first step that might be sufficient for restoring grassland with high native species richness and minimal degradation from invasive plants. More severe degradation likely requires multiple approaches to reverse degradation. Of these, we recommend restoration of ecological processes and disturbance regimes such as fire and grazing. We suggest old-field grasslands in North America, which are similar to European semi-natural grassland in composition and function, deserve more attention by conservation biologists.

Suggested Citation

  • Devan Allen McGranahan & David M. Engle & Samuel D. Fuhlendorf & James R. Miller & Diane M. Debinski, 2013. "Multivariate Analysis of Rangeland Vegetation and Soil Organic Carbon Describes Degradation, Informs Restoration and Conservation," Land, MDPI, vol. 2(3), pages 1-23, July.
  • Handle: RePEc:gam:jlands:v:2:y:2013:i:3:p:328-350:d:27247
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/2/3/328/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/2/3/328/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    2. Sadler, Rohan J. & Hazelton, Martin & Boer, Matthias M. & Grierson, Pauline F., 2010. "Deriving state-and-transition models from an image series of grassland pattern dynamics," Ecological Modelling, Elsevier, vol. 221(3), pages 433-444.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haftay Hailu, 2017. "Analysis of Vegetation Phytosociological Characteristics and Soil Physico-Chemical Conditions in Harishin Rangelands of Eastern Ethiopia," Land, MDPI, vol. 6(1), pages 1-17, January.
    2. ElKamil Tola & Khalid A Al-Gaadi & Rangaswamy Madugundu, 2019. "Employment of GIS techniques to assess the long-term impact of tillage on the soil organic carbon of agricultural fields under hyper-arid conditions," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-15, February.
    3. Edward J. Raynor & Devan Allen McGranahan & James R. Miller & Diane M. Debinski & Walter H. Schacht & David M. Engle, 2021. "Moderate Grazer Density Stabilizes Forage Availability More Than Patch Burning in Low-Stature Grassland," Land, MDPI, vol. 10(4), pages 1-11, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ian Hodge & William M. Adams, 2016. "Short-Term Projects versus Adaptive Governance: Conflicting Demands in the Management of Ecological Restoration," Land, MDPI, vol. 5(4), pages 1-17, November.
    2. Jenerette, G. Darrel & Lal, Rattan, 2007. "Modeled carbon sequestration variation in a linked erosion–deposition system," Ecological Modelling, Elsevier, vol. 200(1), pages 207-216.
    3. Rustici, M. & Ceccherelli, G. & Piazzi, L., 2017. "Predator exploitation and sea urchin bistability: Consequence on benthic alternative states," Ecological Modelling, Elsevier, vol. 344(C), pages 1-5.
    4. Rodrigues, João & Domingos, Tiago & Conceição, Pedro & Belbute, José, 2005. "Constraints on dematerialisation and allocation of natural capital along a sustainable growth path," Ecological Economics, Elsevier, vol. 54(4), pages 382-396, September.
    5. Xu Luo & Hong S. He & Yu Liang & Jacob S. Fraser & Jialin Li, 2018. "Mitigating the Effects of Climate Change through Harvesting and Planting in Boreal Forests of Northeastern China," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    6. Carlos Sanz-Lazaro, 2019. "A Framework to Advance the Understanding of the Ecological Effects of Extreme Climate Events," Sustainability, MDPI, vol. 11(21), pages 1-18, October.
    7. Teh, Su Yean & DeAngelis, Donald L. & Sternberg, Leonel da Silveira Lobo & Miralles-Wilhelm, Fernando R. & Smith, Thomas J. & Koh, Hock-Lye, 2008. "A simulation model for projecting changes in salinity concentrations and species dominance in the coastal margin habitats of the Everglades," Ecological Modelling, Elsevier, vol. 213(2), pages 245-256.
    8. Grolleau, Gilles & Ibanez, Lisette & Mzoughi, Naoufel, 2020. "Moral judgment of environmental harm caused by a single versus multiple wrongdoers: A survey experiment," Ecological Economics, Elsevier, vol. 170(C).
    9. Kong, Xiang-Zhen & Jørgensen, Sven Erik & He, Wei & Qin, Ning & Xu, Fu-Liu, 2013. "Predicting the restoration effects by a structural dynamic approach in Lake Chaohu, China," Ecological Modelling, Elsevier, vol. 266(C), pages 73-85.
    10. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    11. Sonia Kéfi & Vishwesha Guttal & William A Brock & Stephen R Carpenter & Aaron M Ellison & Valerie N Livina & David A Seekell & Marten Scheffer & Egbert H van Nes & Vasilis Dakos, 2014. "Early Warning Signals of Ecological Transitions: Methods for Spatial Patterns," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-13, March.
    12. Monika Winn & Manfred Kirchgeorg & Andrew Griffiths & Martina K. Linnenluecke & Elmar Günther, 2011. "Impacts from climate change on organizations: a conceptual foundation," Business Strategy and the Environment, Wiley Blackwell, vol. 20(3), pages 157-173, March.
    13. Duncan A. O’Brien & Smita Deb & Gideon Gal & Stephen J. Thackeray & Partha S. Dutta & Shin-ichiro S. Matsuzaki & Linda May & Christopher F. Clements, 2023. "Early warning signals have limited applicability to empirical lake data," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Can Askan Mavi & Nicolas Quérou, 2020. "Common pool resource management and risk perceptions," DEM Discussion Paper Series 20-25, Department of Economics at the University of Luxembourg.
    15. Shana M. Sundstrom & Craig R. Allen & David G. Angeler, 2020. "Scaling and discontinuities in the global economy," Journal of Evolutionary Economics, Springer, vol. 30(2), pages 319-345, April.
    16. Therese Lindahl & Anne-Sophie Crépin & Caroline Schill, 2016. "Potential Disasters can Turn the Tragedy into Success," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 65(3), pages 657-676, November.
    17. Yan Cheng & Stefan Oehmcke & Martin Brandt & Lisa Rosenthal & Adrian Das & Anton Vrieling & Sassan Saatchi & Fabien Wagner & Maurice Mugabowindekwe & Wim Verbruggen & Claus Beier & Stéphanie Horion, 2024. "Scattered tree death contributes to substantial forest loss in California," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    18. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    19. Kong, Xiangzhen & He, Wei & Liu, Wenxiu & Yang, Bin & Xu, Fuliu & Jørgensen, Sven Erik & Mooij, Wolf M., 2016. "Changes in food web structure and ecosystem functioning of a large, shallow Chinese lake during the 1950s, 1980s and 2000s," Ecological Modelling, Elsevier, vol. 319(C), pages 31-41.
    20. Ignacio C. Fernández & David Manuel-Navarrete & Robinson Torres-Salinas, 2016. "Breaking Resilient Patterns of Inequality in Santiago de Chile: Challenges to Navigate towards a More Sustainable City," Sustainability, MDPI, vol. 8(8), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:2:y:2013:i:3:p:328-350:d:27247. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.