IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i4p847-d1633744.html
   My bibliography  Save this article

Spatial Coupling and Resilience Differentiation Characteristics of Landscapes in Populated Karstic Areas in Response to Landslide Disaster Risk: An Empirical Study from a Typical Karst Province in China

Author

Listed:
  • Huanhuan Zhou

    (College of Architecture and Urban Planning, Guizhou University, Guiyang 550025, China)

  • Sicheng Wang

    (College of Architecture and Urban Planning, Guizhou University, Guiyang 550025, China)

  • Mingming Gao

    (College of Architecture and Urban Planning, Guizhou University, Guiyang 550025, China
    College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)

  • Guangli Zhang

    (College of Architecture and Urban Planning, Guizhou University, Guiyang 550025, China)

Abstract

Landslides pose a significant threat to the safety and stability of settlements in karst regions worldwide. The long-standing tight balance state of settlement funding and infrastructure makes it difficult to allocate disaster prevention resources effectively against landslide impacts. There is an urgent need to fully leverage the landscape resources of karst settlements and develop landslide risk prevention strategies that balance economic viability with local landscape adaptability. However, limited research has explored the differential resilience characteristics and patterns of landslide disaster risk and settlement landscapes from a spatial coupling perspective. This study, based on landslide disaster and disaster-adaptive landscape data from a typical karst province in China, employs the frequency ratio-random forest model and weighted variance method to construct landslide disaster risk (LDR) and disaster-adaptive landscape (DAL) base maps. The spatial characteristics of urban, urban–rural transition zones, and rural settlements were analyzed, and the resilience differentiation and driving factors of the LDR–DAL coupling relationship were assessed using bivariate spatial autocorrelation and geographical detector models. The key findings are as follows: (1) Urban and peri-urban settlements exhibit a high degree of spatial congruence in the differentiation of LDR and DAL, whereas rural settlements exhibit distinct divergence; (2) the Moran’s I index for LDR and DAL is 0.0818, indicating that urban and peri-urban settlements predominantly cluster in H-L and L-L types, whereas rural settlements primarily exhibit H-H and L-H patterns; (3) slope, soil organic matter, and profile curvature are key determinants of LDR–DAL coupling, with respective influence strengths of 0.568, 0.555, and 0.384; (4) in karst settlement development, augmenting local vegetation in residual mountain areas and parks can help maintain forest ecosystem stability, effectively mitigating landslide risks and enhancing disaster-adaptive capacity by 6.77%. This study helps alleviate the contradiction between high LDR and weak disaster-adaptive resources in the karst region of Southwest China, providing strategic references for global karst settlements to enhance localized landscape adaptation to landslide disasters.

Suggested Citation

  • Huanhuan Zhou & Sicheng Wang & Mingming Gao & Guangli Zhang, 2025. "Spatial Coupling and Resilience Differentiation Characteristics of Landscapes in Populated Karstic Areas in Response to Landslide Disaster Risk: An Empirical Study from a Typical Karst Province in Chi," Land, MDPI, vol. 14(4), pages 1-20, April.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:847-:d:1633744
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/4/847/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/4/847/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:847-:d:1633744. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.