IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i4p715-d1621790.html
   My bibliography  Save this article

Exploration of Spatiotemporal Covariation in Vegetation–Groundwater Relationships: A Case Study in an Endorheic Inland River Basin

Author

Listed:
  • Zheng Lu

    (School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Dongxing Wu

    (School of Resource and Environmental Sciences, Wuhan University, Wuhan 430072, China)

  • Shasha Meng

    (School of Geography, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Xiaokang Kou

    (School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang 050043, China)

  • Lipeng Jiao

    (School of Tourism, Henan Normal University, Xinxiang 453007, China)

Abstract

Groundwater plays a vital role in sustaining dryland ecosystems, yet our understanding of the spatiotemporal dynamics of groundwater–vegetation interactions in endorheic river basins remains limited. In this study, the covariation between the normalized difference vegetation index (NDVI) and water table depth (WTD) in the Heihe River Basin (HRB), a representative endorheic system, is investigated via multisource data and generalized additive models (GAMs). The results indicate that the NDVI peaks in summer (July), with a corresponding decline in the WTD, indicating a basin-wide negative correlation. Spatial analysis reveals distinct upstream–downstream gradients: upstream regions exhibit strong seasonal synchronization, whereas midstream and downstream areas show weaker correlations because of mixed surface and groundwater influences. Landcover and climate significantly affect these interactions, with arid zones showing the strongest negative correlations (ρ = −0.38), particularly in wetlands, whereas humid regions show nonsignificant relationships. Geomorphological analysis highlights stronger correlations in mountainous areas than in low-relief plains. Positive correlations are the most prevalent in arid regions (54.5%), followed by hyper-arid regions (28.9%), while negative correlations also dominate arid regions (54.6%), followed by semiarid regions (27.6%). Cross-correlation analysis reveals synchronous NDVI–WTD changes at 95% of the grid points, with 5% exhibiting time lags (1–3 months), indicating localized hydrogeological feedback. Notably, 32% of the zones with negative correlations overlap with groundwater-dependent ecosystems (GDEs). GAM analysis reveals that 87.9% of the spatial variability in the NDVI–WTD correlations is attributed to environmental factors, with climate (26.6%) and hydrogeology (19.5%) as the dominant contributors. These findings provide critical insights into groundwater–vegetation interactions in arid ecosystems and offer valuable implications for sustainable water resource management.

Suggested Citation

  • Zheng Lu & Dongxing Wu & Shasha Meng & Xiaokang Kou & Lipeng Jiao, 2025. "Exploration of Spatiotemporal Covariation in Vegetation–Groundwater Relationships: A Case Study in an Endorheic Inland River Basin," Land, MDPI, vol. 14(4), pages 1-29, March.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:715-:d:1621790
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/4/715/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/4/715/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:4:p:715-:d:1621790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.