IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v14y2025i3p657-d1616387.html
   My bibliography  Save this article

Evaluating Modified Soil Erodibility Factors with the Aid of Pedotransfer Functions and Dynamic Remote-Sensing Data for Soil Health Management

Author

Listed:
  • Pooja Preetha

    (Department of Mechanical & Civil Engineering and Construction Management, College of Engineering, Technology, and Physical Sciences, Alabama A&M University, Huntsville, AL 35811, USA)

  • Naveen Joseph

    (Department of Geospatial Science, Artis College of Science and Technology, Radford University, Radford, VA 24142, USA)

Abstract

Soil erosion is a critical factor impacting soil health and agricultural productivity, with soil erodibility often quantified using the K-factor in erosion models such as the universal soil loss equation (USLE). Traditional K-factor estimation lacks spatiotemporal precision, particularly under varying soil moisture and land cover conditions. This study introduces modified K-factor pedotransfer functions (Kmlr) integrating dynamic remotely sensed data on land use land cover to enhance K-factor accuracy for diverse soil health management applications. The Kmlr functions from multiple approaches, including dynamic crop and cover management factor (Cdynamic), high resolution satellite data, and downscaled remotely sensed data, were evaluated across spatial and temporal scales within the Fish River watershed in Alabama, a coastal watershed with significant soil–water interactions. The results highlighted that the Kmlr model provided more accurate sediment yield (SY) predictions, particularly in agricultural areas, where traditional models overestimated erosion by upto 59.23 ton/ha. SY analysis across the 36 hydrological response units (HRUs) in the watershed showed that the Kmlr model captured more accurate soil loss estimates, especially in regions with varying land use. The modified K-factor model (Kmlr-c) using Cdynamic and high-resolution soil surface moisture data outperformed the traditional USLE K-factors in predicting SY, with a strong correlation to observed SY data (R² = 0.980 versus R² = 0.911). The total sediment yield predicted by Kmlr-c (525.11 ton/ha) was notably lower than that of USLE-based estimates (828.62 ton/ha), highlighting the overestimation in conventional models. The identification of erosive hotspots revealed that 6003 ha of land was at high erosion risk (K-factor > 0.25), with an average soil loss of 24.2 ton/ha. The categorization of erosive hotspots highlighted critical areas at high risk for erosion, underscoring the need for targeted soil conservation practices. This research underscores the improvement of remotely sensed data-based models and perfects them for the application of soil erodibility assessments thus promoting the development of such models.

Suggested Citation

  • Pooja Preetha & Naveen Joseph, 2025. "Evaluating Modified Soil Erodibility Factors with the Aid of Pedotransfer Functions and Dynamic Remote-Sensing Data for Soil Health Management," Land, MDPI, vol. 14(3), pages 1-22, March.
  • Handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:657-:d:1616387
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/14/3/657/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/14/3/657/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:657-:d:1616387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.