Author
Listed:
- Yu Tian
(College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
Key Lab for Garden Plant Germplasm Development & Landscape Eco-Restoration in Cold Regions of Heilongjiang Province, Harbin 150040, China)
- Bingxi Liu
(College of Landscape Architecture, Northeast Forestry University, Harbin 150040, China
Key Lab for Garden Plant Germplasm Development & Landscape Eco-Restoration in Cold Regions of Heilongjiang Province, Harbin 150040, China)
Abstract
Exploring the phenological divergences in vegetation caused by global climate change is of great significance for gaining a deeper understanding of the carbon cycling process in natural ecosystems. However, in many existing studies, the response of the start of the growing season (SOS) and the end of the growing season (EOS) to temperature exhibited multi-scale inconsistencies. In view of this, we took 259 Chinese urban agglomerations and their rural regions as the study areas, using MODIS phenological products (MCD12Q2), land surface temperature (LST) datasets, altitude, and latitude as data, and explored the phenological divergences in vegetation with LST changes in different geographical zones through box plots, linear regression models, and Spearman’s correlation analysis. The mean SOS and EOS in urban areas were both the earliest on approximately the 100.06th day and 307.39th day, respectively, and were then gradually delayed and advanced separately along an urban–rural gradient of 0–25 km. The divergences in vegetation phenology were no longer significant in rural areas 10 km away from urban boundaries, with change amplitudes of less than 0.4 days. In high latitude (40–50° N) regions, the correlation coefficients between the SOS and EOS of various urban agglomerations and LST were −0.627 and 0.588, respectively, whereas in low latitude (18–25° N) regions, the correlation coefficients appeared to be the opposite, being 0.424 and −0.426, respectively. In mid- to high-altitude (150–400 m) areas, LST had a strong advanced effect on SOS, while in high-altitude (above 1200 m) areas, LST had a strong delayed effect on EOS, with the R 2 values all being above 0.7. In summary, our study has revealed that within the context of varying geographical zones, the effects of LST on phenology exhibited significant spatial heterogeneity. This may provide strong evidence for the inconsistencies in the trends of phenology observed across previous studies and more relevant constraints for improving vegetation phenology prediction models.
Suggested Citation
Yu Tian & Bingxi Liu, 2025.
"Phenological Divergences in Vegetation with Land Surface Temperature Changes in Different Geographical Zones,"
Land, MDPI, vol. 14(3), pages 1-22, March.
Handle:
RePEc:gam:jlands:v:14:y:2025:i:3:p:562-:d:1607335
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:562-:d:1607335. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.