Author
Listed:
- Wenli Dong
(College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)
- Yunhan Zhou
(College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)
- Dongliang Guo
(Zhengzhou Urban Planning Design and Survey Research Institute Co., Zhengzhou 450052, China)
- Zhehui Chen
(College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)
- Jiwu Wang
(College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China)
Abstract
The frequent occurrence of disasters has brought significant challenges to increasingly complex urban systems. Resilient city planning and construction has emerged as a new paradigm for dealing with the growing risks. Infrastructure systems like transportation, lifelines, flood control, and drainage are essential to the operation of a city during disasters. It is necessary to measure how risks affect these systems’ resilience at different spatial scales. This paper develops an infrastructure risk and resilience evaluation index system in city and urban areas based on resilience characteristics. Then, a comprehensive infrastructure resilience evaluation is established based on the risk–resilience coupling mechanism. The overall characteristics of comprehensive infrastructure resilience are then identified. The resilience transmission level and the causes of resilience effects are analyzed based on the principle of resilience scale. Additionally, infrastructure resilience enhancement strategies under different risk scenarios are proposed. In the empirical study of Zhengzhou City, comprehensive infrastructure resilience shows significant clustering in the city area. It is high in the central city and low in the periphery. Specifically, it is relatively high in the southern and northwestern parts of the airport economy zone (AEZ) and low in the center. The leading driving factors in urban areas are risk factors like flood and drought, hazardous materials, infectious diseases, and epidemics, while resilience factors include transportation networks, sponge city construction, municipal pipe networks, and fire protection. This study proposes a “risk-resilience” coupling framework to evaluate and analyze multi-hazard risks and the multi-system resilience of urban infrastructure across multi-level spatial scales. It provides an empirical resilience evaluation framework and enhancement strategies, complementing existing individual dimensional risk or resilience studies. The findings could offer visualized spatial results to support the decision-making in Zhengzhou’s resilient city planning outline and infrastructure special planning and provide references for resilience assessment and planning in similar cities.
Suggested Citation
Wenli Dong & Yunhan Zhou & Dongliang Guo & Zhehui Chen & Jiwu Wang, 2025.
"Evaluation of Urban Infrastructure Resilience Based on Risk–Resilience Coupling: A Case Study of Zhengzhou City,"
Land, MDPI, vol. 14(3), pages 1-27, March.
Handle:
RePEc:gam:jlands:v:14:y:2025:i:3:p:530-:d:1604538
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:14:y:2025:i:3:p:530-:d:1604538. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.