Author
Listed:
- Yanfen Xiang
(School of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China
School of Architecture and Art, Central South University, Changsha 410075, China)
- Bohong Zheng
(School of Architecture and Art, Central South University, Changsha 410075, China)
- Jiren Wang
(School of Architecture and Art, Central South University, Changsha 410075, China)
- Jiajun Gong
(School of Architecture and Art, Central South University, Changsha 410075, China)
- Jian Zheng
(School of Architecture, Changsha University of Science and Technology, Changsha 410076, China)
Abstract
Optimizing urban spatial morphology is one of the most effective methods for improving the urban thermal environment. Some studies have used the local climate zones (LCZ) classification system to examine the relationship between urban spatial morphology and Surface Urban Heat Islands (SUHIs). However, these studies often rely on single-time-point data, failing to consider the changes in urban space and the time-series LCZ mapping relationships. This study utilized remote sensing data from Landsat 5, 7, and 8–9 to retrieve land surface temperatures in Changsha from 2005 to 2020 using the Mono-Window Algorithm. The spatial-temporal evolution of the LCZ and the Surface Urban Heat Island Intensity (SUHII) was then examined and analyzed. This study aims to (1) propose a localized, long-time LCZ mapping method, (2) investigate the spatial-temporal relationship between the LCZ and the SUHII, and (3) develop a more convenient SUHI assessment method for urban planning and design. The results showed that the spatial-temporal evolution of the LCZ reflects the sequence of urban expansion. In terms of quantity, the number of built-type LCZs maintaining their original types is low, with each undergoing at least one type change. The open LCZs increased the most, followed by the sparse and the composite LCZs. Spatially, the LCZs experience reverse transitions due to urban expansion and quality improvements in central urban areas. Seasonal changes in the LCZ types and the SUHI vary, with differences not only among the LCZ types but also in building heights within the same type. The relative importance of the LCZ parameters also differs between seasons. The SUHI model constructed using Boosted Regression Trees (BRT) demonstrated high predictive accuracy, with R 2 values of 0.911 for summer and 0.777 for winter. In practical case validation, the model explained 97.86% of the data for summer and 96.77% for winter. This study provides evidence-based planning recommendations to mitigate urban heat and create a comfortable built environment.
Suggested Citation
Yanfen Xiang & Bohong Zheng & Jiren Wang & Jiajun Gong & Jian Zheng, 2024.
"Research on the Spatial-Temporal Evolution of Changsha’s Surface Urban Heat Island from the Perspective of Local Climate Zones,"
Land, MDPI, vol. 13(9), pages 1-28, September.
Handle:
RePEc:gam:jlands:v:13:y:2024:i:9:p:1479-:d:1476965
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:9:p:1479-:d:1476965. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.