Author
Listed:
- Quanzhi Li
(School of Geosciences & Surveying Engineering, China University of Mining & Technology, Beijing 100083, China)
- Zhenqi Hu
(School of Geosciences & Surveying Engineering, China University of Mining & Technology, Beijing 100083, China
School of Environment Science & Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China)
- Fan Zhang
(School of Geosciences & Surveying Engineering, China University of Mining & Technology, Beijing 100083, China)
- Yanwen Guo
(School of Environment Science & Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China)
- Yusheng Liang
(School of Geosciences & Surveying Engineering, China University of Mining & Technology, Beijing 100083, China)
Abstract
Coal mining inevitably causes damage to the surface ecological environment. In response to the characteristics of multiple factors, wide scope, and long time series of surface ecological environment damage in coal mining subsidence areas, how to integrate multiple data sources and monitoring methods to achieve monitoring and trend analysis of ecological damage throughout the entire mining cycle still needs to be studied. In addition, the 110 mining method provides an innovative method for underground coal mining to reduce its surface ecological damage, but the differences in surface damage between the two mining modes and the effectiveness of the 110 method in realizing surface ecological damage-reducing mining still need to be studied in depth. Therefore, this study takes the surface ecological damage in the mining area of Lvliang City, a typical resource city in Shanxi Province, China, as the object. It establishes a four-in-one “Satellite–UAV–Ground–Underground” information monitoring method, proposes a historical big data evolution analysis method, constructs three spatial scales of historical big databases, clarifies the current situation and development trend of damage in coal mining areas in Lvliang City and explores the differences in surface ecological environment damage characteristics in coal mining areas based on the 121 and 110 mining methods. The results show that: (1) The existing coal mining subsidence area in Lvliang City is as high as 92,191.47 hectares, and it is expected to continue to increase to 130,739.55 hectares in the future 2035, with a growth rate of 41.812%, which realizes the goals of mapping the current situation, retracing the history and predicting the future of the ecological damage of the surface in Lvliang City. (2) The surface NDVI of the 110 working face is restored to the average level of the mining area faster than that of the 121 working face. The surface crack width, step displacement, length, distribution density, and surface settlement height of the 110 working face are all smaller than those of the 121 working face. It has been verified that the unique top-cutting and swelling filling effect of the 110 methods can effectively reduce the ecological damage caused by coal mining subsidence. And its widespread application can effectively realize the ecological environmental protection of the coal mine area and contribute to the high-quality development of the coal industry in Lvliang City.
Suggested Citation
Quanzhi Li & Zhenqi Hu & Fan Zhang & Yanwen Guo & Yusheng Liang, 2024.
"A Study on Historical Big Data Analysis of Surface Ecological Damage in the Coal Mining Area of Lvliang City Based on Two Mining Modes,"
Land, MDPI, vol. 13(9), pages 1-27, September.
Handle:
RePEc:gam:jlands:v:13:y:2024:i:9:p:1411-:d:1469167
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:9:p:1411-:d:1469167. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.