IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i7p1081-d1437610.html
   My bibliography  Save this article

Using Ecological Footprint Analysis to Evaluate Sustainable Development in Lushan County, China

Author

Listed:
  • Huihui Yang

    (College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China
    School of Architecture and Urban Planning, Chongqing University, Chongqing 400044, China)

  • Shuiyu Yan

    (School of Architecture and Urban Planning, Chongqing University, Chongqing 400044, China)

  • Na An

    (College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China)

  • Qiang Yao

    (College of Architecture and Urban Planning, Tongji University, Shanghai 200092, China)

Abstract

Mountain town ecosystems are fragile and highly susceptible to the impacts of human activities and ecological imbalances. This study aimed to improve the traditional ecological footprint (EF) model by incorporating expanded land functions, localised factors, and temporal continuity. Using Lushan County in Sichuan Province as a case study, we calculated spatial and temporal changes from 2009 to 2022 and evaluated sustainable development through four indicators: ecological pressure, ecological sustainability, ecological occupation, and ecological–economic coordination. The results show that from 2009 to 2022, the per capita ecological carbon footprint in Lushan County decreased by 48%, and the ecological carrying capacity declined by 9%. Despite a more than 73% reduction in the ecological surplus, indicating gradual ecological recovery, Lushan County remains in an ecological deficit state with increasing ecological unsustainability. Only forest land is in an ecological surplus state among the six land use categories, while all other categories are in ecological deficit states. Regarding ecological sustainability assessment, Lushan County’s overall land use is in a strong sustainability state, with the sustainable development index gradually improving. However, ecological–economic coordination remains poor, with a high ecological occupation index and significant ecological pressure, indicating an imbalance between economic development and ecosystem protection. For future sustainable development in mountainous areas, Lushan County should focus on reducing the ecological carbon footprint and enhancing the ecological carrying capacity. These research findings provide valuable insights and methodological references for the sustainable development of mountain towns.

Suggested Citation

  • Huihui Yang & Shuiyu Yan & Na An & Qiang Yao, 2024. "Using Ecological Footprint Analysis to Evaluate Sustainable Development in Lushan County, China," Land, MDPI, vol. 13(7), pages 1-21, July.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:1081-:d:1437610
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/7/1081/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/7/1081/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sally Caird & Robin Roy, 2006. "Household Ecological Footprints — Demographics And Sustainability," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 407-429.
    2. Destek, Mehmet & Sinha, Avik, 2020. "Renewable, non-renewable energy consumption, economic growth, trade openness and ecological footprint: Evidence from organisation for economic Co-operation and development countries," MPRA Paper 104246, University Library of Munich, Germany, revised 2020.
    3. Niccolucci, V. & Bastianoni, S. & Tiezzi, E.B.P. & Wackernagel, M. & Marchettini, N., 2009. "How deep is the footprint? A 3D representation," Ecological Modelling, Elsevier, vol. 220(20), pages 2819-2823.
    4. Gossling, Stefan & Hansson, Carina Borgstrom & Horstmeier, Oliver & Saggel, Stefan, 2002. "Ecological footprint analysis as a tool to assess tourism sustainability," Ecological Economics, Elsevier, vol. 43(2-3), pages 199-211, December.
    5. Jie, Huo & Khan, Irfan & Alharthi, Majed & Zafar, Muhammad Wasif & Saeed, Asif, 2023. "Sustainable energy policy, socio-economic development, and ecological footprint: The economic significance of natural resources, population growth, and industrial development," Utilities Policy, Elsevier, vol. 81(C).
    6. Wiedmann, Thomas & Minx, Jan & Barrett, John & Wackernagel, Mathis, 2006. "Allocating ecological footprints to final consumption categories with input-output analysis," Ecological Economics, Elsevier, vol. 56(1), pages 28-48, January.
    7. Verhofstadt, E. & Van Ootegem, L. & Defloor, B. & Bleys, B., 2016. "Linking individuals' ecological footprint to their subjective well-being," Ecological Economics, Elsevier, vol. 127(C), pages 80-89.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yajie Shang & Yuanyuan Chen & Yalin Zhai & Lei Wang, 2025. "Spatiotemporal Relationship Between Carbon Metabolism and Ecosystem Service Value in the Rural Production–Living–Ecological Space of Northeast China’s Black Soil Region: A Case Study of Bin County," Land, MDPI, vol. 14(1), pages 1-31, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ansari, Mohd Arshad, 2022. "Re-visiting the Environmental Kuznets curve for ASEAN: A comparison between ecological footprint and carbon dioxide emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. White, Thomas J., 2007. "Sharing resources: The global distribution of the Ecological Footprint," Ecological Economics, Elsevier, vol. 64(2), pages 402-410, December.
    3. Ye-Ning Wang & Qiang Zhou & Hao-Wei Wang, 2020. "Assessing Ecological Carrying Capacity in the Guangdong-Hong Kong-Macao Greater Bay Area Based on a Three-Dimensional Ecological Footprint Model," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    4. Yisong Wang & Jincheng Huang & Shiming Fang, 2019. "Sustainability Assessment of Natural Capital Based on the 3D Ecological Footprint Model: A Case Study of the Shennongjia National Park Pilot," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    5. Thomas Wiedmann & John Barrett, 2010. "A Review of the Ecological Footprint Indicator—Perceptions and Methods," Sustainability, MDPI, vol. 2(6), pages 1-49, June.
    6. Wang, Haiyan & Lei, Zhaoyang, 2023. "Energy supply from oil and gas, mineral depletion, and total natural resource rents: Impact of oil equivalent energy use CO2 intensity," Resources Policy, Elsevier, vol. 86(PB).
    7. Decun Wu & Jinping Liu, 2016. "Multi-Regional Input-Output (MRIO) Study of the Provincial Ecological Footprints and Domestic Embodied Footprints Traded among China’s 30 Provinces," Sustainability, MDPI, vol. 8(12), pages 1-31, December.
    8. Bui Hoang Ngoc, 2022. "Do Tourism Development and Globalization Reinforce Ecological Footprint? Evidence From RCEP Countries," SAGE Open, , vol. 12(4), pages 21582440221, December.
    9. Fan, Lulu & Wang, Dawei, 2024. "Natural resource efficiency and green economy: Key takeaways on clean energy, globalization, and innovations in BRICS countries," Resources Policy, Elsevier, vol. 88(C).
    10. Meißner, Nathalie, 2013. "The incentives of private companies to invest in protected area certificates: How coalitions can improve ecosystem sustainability," Ecological Economics, Elsevier, vol. 95(C), pages 148-158.
    11. Carballo Penela, Adolfo & Sebastián Villasante, Carlos, 2008. "Applying physical input-output tables of energy to estimate the energy ecological footprint (EEF) of Galicia (NW Spain)," Energy Policy, Elsevier, vol. 36(3), pages 1148-1163, March.
    12. Kitzes, Justin & Galli, Alessandro & Bagliani, Marco & Barrett, John & Dige, Gorm & Ede, Sharon & Erb, Karlheinz & Giljum, Stefan & Haberl, Helmut & Hails, Chris & Jolia-Ferrier, Laurent & Jungwirth, , 2009. "A research agenda for improving national Ecological Footprint accounts," Ecological Economics, Elsevier, vol. 68(7), pages 1991-2007, May.
    13. Kang, Han & Li, Le & Feng, Jin, 2023. "Are natural resources a hindrance to ecological footprint? Mineral rents, energy production, and consumption positions," Resources Policy, Elsevier, vol. 86(PA).
    14. Fabio Iraldo & Benedetta Nucci, 2016. "Proactive environmental management in hotels: What difference does it make?," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2016(2), pages 81-106.
    15. Zhongwei, Huang & Liu, Yishu, 2022. "The role of eco-innovations, trade openness, and human capital in sustainable renewable energy consumption: Evidence using CS-ARDL approach," Renewable Energy, Elsevier, vol. 201(P1), pages 131-140.
    16. Zhigang Li & Jie Yang & Jialong Zhong & Dong Zhang, 2022. "Assessment of Urban Agglomeration Ecological Sustainability and Identification of Influencing Factors: Based on the 3DEF Model and the Random Forest," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    17. Liu, Yaping & Sadiq, Farah & Ali, Wajahat & Kumail, Tafazal, 2022. "Does tourism development, energy consumption, trade openness and economic growth matters for ecological footprint: Testing the Environmental Kuznets Curve and pollution haven hypothesis for Pakistan," Energy, Elsevier, vol. 245(C).
    18. Ersin Yavuz & Emre Kilic & Abdullah Emre Caglar, 2024. "A new hypothesis for the unemployment-environment dilemma: is the environmental Phillips curve valid in the framework of load capacity factor in Turkiye?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(11), pages 29475-29492, November.
    19. Ling Li & Xingming Li & Hanghang Fan & Jie Lu & Xiuli Wang & Tianlin Zhai, 2024. "Quantifying and Zoning Ecological Compensation for Cultivated Land in Intensive Agricultural Areas: A Case Study in Henan Province, China," Land, MDPI, vol. 13(10), pages 1-21, October.
    20. Riza Radmehr & Samira Shayanmehr & Ernest Baba Ali & Elvis Kwame Ofori & Elżbieta Jasińska & Michał Jasiński, 2022. "Exploring the Nexus of Renewable Energy, Ecological Footprint, and Economic Growth through Globalization and Human Capital in G7 Economics," Sustainability, MDPI, vol. 14(19), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:7:p:1081-:d:1437610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.