IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i6p821-d1410814.html
   My bibliography  Save this article

Research on the Impact of the Digital Economy and Technological Innovation on Agricultural Carbon Emissions

Author

Listed:
  • Jian Li

    (School of Economics, Ocean University of China, Qingdao 266100, China
    Ocean Development Research Institute, Ocean University of China, Qingdao 266100, China)

  • Xiangchen Sheng

    (School of Economics, Ocean University of China, Qingdao 266100, China)

  • Shuhua Zhang

    (School of Economics, Ocean University of China, Qingdao 266100, China)

  • Yixuan Wang

    (School of Economics, Ocean University of China, Qingdao 266100, China)

Abstract

The digital economy, closely linked to agricultural progress, plays a key role in reducing agricultural carbon emissions. By utilizing panel data between 2011 and 2021 from 30 Chinese provincial-level regions, the present work empirically assesses the direct impact and nonlinear spatial spillover effects of the digital economy on agricultural carbon emissions, where methodologies including fixed effects, threshold models, and spatial econometrics are employed. The results were as follows: (1) The digital economy led to remarkable inhibition of agricultural carbon emissions, which was consistent across various robustness checks. (2) The carbon reduction efficiency of the digital economy presented obvious spatial variation, which had a greater negative effect in eastern regions and major grain-producing regions. (3) The digital economy had a nonlinear impact on agricultural carbon emissions, and technological innovation played a threshold effect, showing an “inverted U-shaped” characteristic of increasing first and then decreasing overall. (4) This emission abatement effect also showed a significant spatial spillover aspect, meaning that the digital economy development in one area prominently abates agricultural carbon emissions in adjacent provinces. Our findings might provide a theoretical and empirical foundation for comprehending and addressing agricultural carbon emissions abatement in China from the digital economy perspective.

Suggested Citation

  • Jian Li & Xiangchen Sheng & Shuhua Zhang & Yixuan Wang, 2024. "Research on the Impact of the Digital Economy and Technological Innovation on Agricultural Carbon Emissions," Land, MDPI, vol. 13(6), pages 1-18, June.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:6:p:821-:d:1410814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/6/821/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/6/821/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ning Xu & Desen Zhao & Wenjie Zhang & Ming Liu & He Zhang, 2022. "Does Digital Transformation Promote Agricultural Carbon Productivity in China?," Land, MDPI, vol. 11(11), pages 1-19, November.
    2. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    3. Xiaobo Shen & Boqiang Lin & Wei Wu, 2019. "R&D Efforts, Total Factor Productivity, and the Energy Intensity in China," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 55(11), pages 2566-2588, September.
    4. Isbat Alam & Shichang Lu & Muddassar Sarfraz & Muhammad Mohsin, 2023. "The Interplay of Green Technology and Energy Consumption: A Study of China’s Carbon Neutrality and Sustainable Digital Economy," Energies, MDPI, vol. 16(17), pages 1-18, August.
    5. Huang, Junbing & Cai, Xiaochen & Huang, Shuo & Tian, Sen & Lei, Hongyan, 2019. "Technological factors and total factor productivity in China: Evidence based on a panel threshold model," China Economic Review, Elsevier, vol. 54(C), pages 271-285.
    6. Pan, Yuling & Dong, Feng, 2022. "Dynamic evolution and driving factors of new energy development: Fresh evidence from China," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    7. Ruoxi Zhong & Qiang He & Yanbin Qi, 2022. "Digital Economy, Agricultural Technological Progress, and Agricultural Carbon Intensity: Evidence from China," IJERPH, MDPI, vol. 19(11), pages 1-18, May.
    8. Qi Jiang & Jizhi Li & Hongyun Si & Yangyue Su, 2022. "The Impact of the Digital Economy on Agricultural Green Development: Evidence from China," Agriculture, MDPI, vol. 12(8), pages 1-22, July.
    9. Yanqi Cai & Junwei Xu & Paiman Ahmad & Ahsan Anwar, 2022. "What drives carbon emissions in the long-run? The role of renewable energy and agriculture in achieving the sustainable development goals," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 35(1), pages 4603-4624, December.
    10. Jing Bai & Jun Liu & Libang Ma & Wenbo Zhang, 2023. "The Impact of Farmland Management Scale on Carbon Emissions," Land, MDPI, vol. 12(9), pages 1-18, September.
    11. Huang, Caihong & Zhang, Xiaoqing & Liu, Kai, 2021. "Effects of human capital structural evolution on carbon emissions intensity in China: A dual perspective of spatial heterogeneity and nonlinear linkages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Yi, Ming & Liu, Yafen & Sheng, Mingyue Selena & Wen, Le, 2022. "Effects of digital economy on carbon emission reduction: New evidence from China," Energy Policy, Elsevier, vol. 171(C).
    13. Serdar Yilmaz & Kingley E. Haynes & Mustafa Dinc, 2002. "Geographic and Network Neighbors: Spillover Effects of Telecommunications Infrastructure," Journal of Regional Science, Wiley Blackwell, vol. 42(2), pages 339-360, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning Xu & Desen Zhao & Wenjie Zhang & Ming Liu & He Zhang, 2022. "Does Digital Transformation Promote Agricultural Carbon Productivity in China?," Land, MDPI, vol. 11(11), pages 1-19, November.
    2. Ostadzad, Ali Hossein, 2022. "Innovation and carbon emissions: Fixed-effects panel threshold model estimation for renewable energy," Renewable Energy, Elsevier, vol. 198(C), pages 602-617.
    3. Ran, Qiying & Yang, Xiaodong & Yan, Hongchuan & Xu, Yang & Cao, Jianhong, 2023. "Natural resource consumption and industrial green transformation: Does the digital economy matter?," Resources Policy, Elsevier, vol. 81(C).
    4. Senhua Huang & Lingming Chen, 2023. "The Impact of the Digital Economy on the Urban Total-Factor Energy Efficiency: Evidence from 275 Cities in China," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    5. Zhenhua Xu & Fuyi Ci, 2023. "Spatial-Temporal Characteristics and Driving Factors of Coupling Coordination between the Digital Economy and Low-Carbon Development in the Yellow River Basin," Sustainability, MDPI, vol. 15(3), pages 1-23, February.
    6. Dong, Kangyin & Liu, Yang & Wang, Jianda & Dong, Xiucheng, 2024. "Is the digital economy an effective tool for decreasing energy vulnerability? A global case," Ecological Economics, Elsevier, vol. 216(C).
    7. Zheng, Hongyun & Vatsa, Puneet & Ma, Wanglin & Zhou, Xiaoshou, 2023. "Working hours and job satisfaction in China: A threshold analysis," China Economic Review, Elsevier, vol. 77(C).
    8. Shaohua Zhang & Tzu-Pu Chang & Li-Chuan Liao, 2020. "A Dual Challenge in China’s Sustainable Total Factor Productivity Growth," Sustainability, MDPI, vol. 12(13), pages 1-17, July.
    9. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    10. Wang, Xiaoqing & Qin, Chuan & Liu, Yufeng & Tanasescu, Cristina & Bao, Jiangnan, 2023. "Emerging enablers of green low-carbon development: Do digital economy and open innovation matter?," Energy Economics, Elsevier, vol. 127(PA).
    11. Shuangjie Li & Wei Wang & Liming Wang & Ge Wang, 2023. "Digital Economy and 3E Efficiency Performance: Evidence from EU Countries," Sustainability, MDPI, vol. 15(7), pages 1-18, March.
    12. Yuqing Jin & Zhidan Shen & Jianxu Liu & Roengchai Tansuchat, 2023. "The Impact of the Digital Economy on the Health Industry from the Perspective of Threshold and Intermediary Effects: Evidence from China," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    13. Qiuqiu Guo & Xiaoyu Ma, 2023. "How Does the Digital Economy Affect Sustainable Urban Development? Empirical Evidence from Chinese Cities," Sustainability, MDPI, vol. 15(5), pages 1-21, February.
    14. Yin, Zi Hui & Zeng, Wei Ping, 2023. "The effects of industrial intelligence on China's energy intensity: The role of technology absorptive capacity," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    15. Yingzi Chen & Wanwan Yang & Yaqi Hu, 2022. "Internet Development, Consumption Upgrading and Carbon Emissions—An Empirical Study from China," IJERPH, MDPI, vol. 20(1), pages 1-23, December.
    16. Fan, Min & Lu, Zhixi & Zhou, Yun & Wang, Jian, 2024. "Threshold and spillovers effects of fintech on China's energy dependence on fossil fuel," Resources Policy, Elsevier, vol. 91(C).
    17. Song Zhang & Chunlai Chen, 2020. "Does Outward Foreign Direct Investment Facilitate China's Export Upgrading?," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 28(5), pages 64-89, September.
    18. Yihui Chen & Minjie Li, 2024. "How does the digital transformation of agriculture affect carbon emissions? Evidence from China’s provincial panel data," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-17, December.
    19. Huiling Liu & Jianhua Zhang & Hongyun Huang & Haitao Wu & Yu Hao, 2023. "Environmental good exports and green total factor productivity: Lessons from China," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1681-1703, June.
    20. Haifeng Wang & Guangsi Li & Yunzhi Hu, 2023. "The Impact of the Digital Economy on Food System Resilience: Insights from a Study across 190 Chinese Towns," Sustainability, MDPI, vol. 15(24), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:6:p:821-:d:1410814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.