Author
Listed:
- Gederts Ievinsh
(Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., 1004 Riga, Latvia)
Abstract
The aim of the present review is to compile and analyze information on biology of Rhinanthus species in the context of grassland biodiversity. Root hemiparasites have been relatively less studied in comparison to economically important holoparasitic weed species. Rhinanthus species appear to be genetically polymorphic, but also possess high phenotypic plasticity, and ecological factors are important determinants in evolution of specialization to most appropriate hosts. Rhinanthus individuals have a relatively short life span, and flowering is a photoperiod- or host plant-independent phenomenon. Both insect pollination and self-pollination can occur. Seeds do not form a persistent soil seed bank and have physiological dormancy broken by stratification. In general, Rhinanthus species have low host specificity, but there clearly are ‘preferred’ or ‘avoided’ hosts in natural conditions. In controlled conditions, interaction with most grass species result in more prominent parasite growth stimulation in comparison to that of legumes, and, especially, forbs, but there are significant gradations and exceptions. Ecological requirements of Rhinanthus species have been rarely studied, but it can be expected that significant tolerance against mineral nutrient heterogeneity and water shortage can be found. It seems that host plant characteristics are important determinants of the environmental resilience of Rhinanthus . Parasites not only obtain resources (water and minerals) from host plants but also negatively affect their physiological functions. The most intriguing and practically unexplored question is the exchange of chemical signals between the Rhinanthus parasite and the host plant. Extending this idea, it can be predicted that signals will also be exchanged between multiple host plants whose roots are connected through the parasite. It is highly possible that the exchange of small RNAs between plants could influence their environmental tolerance. Host selectivity forms the functional basis of changes in species diversity in grasslands, but the outcome seems to be highly dependent on other conditions, especially, soil edaphic factors. Development of new model systems is necessary to further expand our knowledge about the complex effects of parasitic plants on ecosystems.
Suggested Citation
Gederts Ievinsh, 2024.
"Biology of Hemiparasitic Rhinanthus Species in the Context of Grassland Biodiversity,"
Land, MDPI, vol. 13(6), pages 1-21, June.
Handle:
RePEc:gam:jlands:v:13:y:2024:i:6:p:814-:d:1410288
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:6:p:814-:d:1410288. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.