IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i4p496-d1373821.html
   My bibliography  Save this article

Coupling Changes in Runoff and Sediment and Their Relationships with Erosion Energy and Underlying Surface in the Wuding River Basin, China

Author

Listed:
  • Qiannan Yang

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China)

  • Haidong Gao

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China)

  • Yong Han

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China)

  • Zhanbin Li

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China)

  • Kexin Lu

    (State Key Laboratory of Eco-Hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an 710048, China)

Abstract

Investigating the changes in the runoff and sediment coupling relationship in the Middle Yellow River Basin of China can not only deepen the understanding of soil loss control in arid areas, but also help solve key issues of regional ecological protection. Since the 1960s, soil- and water-conservation projects have been implemented in the Middle Yellow River Basin, inducing a significant reduction in runoff and sediment and changes in the relationship between runoff and sediment. The study identified the change points of coupling relationship between runoff and sediment in the Wuding River Basin (WRB) by constructing a diagnostic method based on coupling coordination degree and the Pettitt test; the study validated this using the Copula function and analyzed the impacts of erosion energy and underlying surface factors. The results showed the following: (1) the method based on coupling coordination degree and the Pettit test could accurately reflect the coupling relationship of runoff and sediment and identify two change points (1971 and 1996); (2) runoff and sediment in the WRB decreased gradually over three periods (P1, 1960–1970; P2, 1971–1995; P3, 1996–2020), with an average annual runoff of 15.34 × 10 8 , 10.72 × 10 8 , and 8.32 × 10 8 m 3 and average annual sediment load of 1.84 × 10 8 , 0.82 × 10 8 , and 0.32 × 10 8 t, respectively; (3) the maximum possible joint design value of runoff and sediment under different return periods in P1 were all the highest, followed by P2 and P3, and the larger the return period, the higher the maximum possible joint design value; (4) runoff erosion power could promote runoff and sediment in PE (1960–2020), P1, P2 and P3 at a significant level, check dams and terrace could decrease runoff and sediment significantly in PE, and the highest contribution to runoff reduction was check dam (95.4%), while the highest contribution to sediment reduction was REP (93.8%). The study can provide a new way to analyze the changes in the runoff and sediment relationship and provide scientific support for runoff and sediment regulation in the Middle Yellow River Basin.

Suggested Citation

  • Qiannan Yang & Haidong Gao & Yong Han & Zhanbin Li & Kexin Lu, 2024. "Coupling Changes in Runoff and Sediment and Their Relationships with Erosion Energy and Underlying Surface in the Wuding River Basin, China," Land, MDPI, vol. 13(4), pages 1-18, April.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:496-:d:1373821
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/4/496/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/4/496/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hamparsum Bozdogan, 1987. "Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 345-370, September.
    2. A. N. Pettitt, 1979. "A Non‐Parametric Approach to the Change‐Point Problem," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 28(2), pages 126-135, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ioana Gutu & Daniela Tatiana Agheorghiesei & Alexandru Tugui, 2023. "Assessment of a Workforce Sustainability Tool through Leadership and Digitalization," IJERPH, MDPI, vol. 20(2), pages 1-30, January.
    2. Daniela Andreini & Diego Rinallo & Giuseppe Pedeliento & Mara Bergamaschi, 2017. "Brands and Religion in the Secularized Marketplace and Workplace: Insights from the Case of an Italian Hospital Renamed After a Roman Catholic Pope," Journal of Business Ethics, Springer, vol. 141(3), pages 529-550, March.
    3. S. A. Abu Bakar & Saralees Nadarajah & Z. A. Absl Kamarul Adzhar, 2018. "Loss modeling using Burr mixtures," Empirical Economics, Springer, vol. 54(4), pages 1503-1516, June.
    4. Byrd, T. A. & Marshall, T. E., 1997. "Relating information technology investment to organizational performance: a causal model analysis," Omega, Elsevier, vol. 25(1), pages 43-56, February.
    5. Stephen J. Déry & Marco A. Hernández-Henríquez & Tricia A. Stadnyk & Tara J. Troy, 2021. "Vanishing weekly hydropeaking cycles in American and Canadian rivers," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    6. Herbert Hoijtink & Meinte Vollema, 2003. "Contemporary Extensions of the Rasch Model," Quality & Quantity: International Journal of Methodology, Springer, vol. 37(3), pages 263-276, August.
    7. Jaewoong Yun, 2023. "Strategies for Improving the Sustainability of Fare-Free Policy for the Elderly through Preferences by Travel Modes," Sustainability, MDPI, vol. 15(20), pages 1-14, October.
    8. Malerba, Martino E. & Connolly, Sean R. & Heimann, Kirsten, 2015. "An experimentally validated nitrate–ammonium–phytoplankton model including effects of starvation length and ammonium inhibition on nitrate uptake," Ecological Modelling, Elsevier, vol. 317(C), pages 30-40.
    9. Aline Riboli Marasca & Maurício Scopel Hoffmann & Anelise Reis Gaya & Denise Ruschel Bandeira, 2021. "Subjective Well-Being and Psychopathology Symptoms: Mental Health Profiles and their Relations with Academic Achievement in Brazilian Children," Child Indicators Research, Springer;The International Society of Child Indicators (ISCI), vol. 14(3), pages 1121-1137, June.
    10. Friederike Paetz, 2016. "Persönlichkeitsmerkmale als Segmentierungsvariablen: Eine empirische Studie [Personality traits for market segmentation: An empirical study]," Schmalenbach Journal of Business Research, Springer, vol. 68(3), pages 279-306, August.
    11. Emre Demirkaya & Yang Feng & Pallavi Basu & Jinchi Lv, 2022. "Large-scale model selection in misspecified generalized linear models [Information theory and an extension of the maximum likelihood principle]," Biometrika, Biometrika Trust, vol. 109(1), pages 123-136.
    12. Rosbergen, Edward & Wedel, Michel & Pieters, Rik, 1997. "Analyzing visual attention tot repeated print advertising using scanpath theory," Research Report 97B32, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    13. Eduardo Correia & Rodrigo Calili & José Francisco Pessanha & Maria Fatima Almeida, 2023. "Definition of Regulatory Targets for Electricity Non-Technical Losses: Proposition of an Automatic Model-Selection Technique for Panel Data Regressions," Energies, MDPI, vol. 16(6), pages 1-22, March.
    14. Kazi Ali Tamaddun & Ajay Kalra & Sajjad Ahmad, 2019. "Spatiotemporal Variation in the Continental US Streamflow in Association with Large-Scale Climate Signals Across Multiple Spectral Bands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(6), pages 1947-1968, April.
    15. Jie Yang & Yimin Wang & Jun Yao & Jianxia Chang & Guoxin Xu & Xin Wang & Hui Hu, 2020. "Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1711-1726, September.
    16. Alina Bărbulescu & Cristian Ștefan Dumitriu, 2021. "On the Connection between the GEP Performances and the Time Series Properties," Mathematics, MDPI, vol. 9(16), pages 1-19, August.
    17. Nalan Basturk & Richard Paap & Dick van Dijk, 2008. "Structural Differences in Economic Growth," Tinbergen Institute Discussion Papers 08-085/4, Tinbergen Institute.
    18. Golob, Thomas F. & Regan, A C, 2002. "Trucking Industry Preferences for Driver Traveler Information Using Wireless Internet-enabled Devices," University of California Transportation Center, Working Papers qt40q8h6sf, University of California Transportation Center.
    19. Golob, Thomas F. & Regan, A C, 2003. "Traffic Congestion and Trucking Managers' Use of Automated Routing and Scheduling," University of California Transportation Center, Working Papers qt74z234n4, University of California Transportation Center.
    20. Francesco BARTOLUCCI & Silvia BACCI & Claudia PIGINI, 2015. "A Misspecification Test for Finite-Mixture Logistic Models for Clustered Binary and Ordered Responses," Working Papers 410, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:4:p:496-:d:1373821. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.