IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i8p1516-d1206521.html
   My bibliography  Save this article

Indirect Prediction of Salt Affected Soil Indicator Properties through Habitat Types of a Natural Saline Grassland Using Unmanned Aerial Vehicle Imagery

Author

Listed:
  • László Pásztor

    (Institute for Soil Sciences, Centre for Agricultural Research, Herman Ottó Rd. 15., H-1022 Budapest, Hungary)

  • Katalin Takács

    (Institute for Soil Sciences, Centre for Agricultural Research, Herman Ottó Rd. 15., H-1022 Budapest, Hungary)

  • János Mészáros

    (Institute for Soil Sciences, Centre for Agricultural Research, Herman Ottó Rd. 15., H-1022 Budapest, Hungary)

  • Gábor Szatmári

    (Institute for Soil Sciences, Centre for Agricultural Research, Herman Ottó Rd. 15., H-1022 Budapest, Hungary)

  • Mátyás Árvai

    (Institute for Soil Sciences, Centre for Agricultural Research, Herman Ottó Rd. 15., H-1022 Budapest, Hungary)

  • Tibor Tóth

    (Institute for Soil Sciences, Centre for Agricultural Research, Herman Ottó Rd. 15., H-1022 Budapest, Hungary)

  • Gyöngyi Barna

    (Institute for Soil Sciences, Centre for Agricultural Research, Herman Ottó Rd. 15., H-1022 Budapest, Hungary)

  • Sándor Koós

    (Institute for Soil Sciences, Centre for Agricultural Research, Herman Ottó Rd. 15., H-1022 Budapest, Hungary)

  • Zsófia Adrienn Kovács

    (Institute for Soil Sciences, Centre for Agricultural Research, Herman Ottó Rd. 15., H-1022 Budapest, Hungary)

  • Péter László

    (Institute for Soil Sciences, Centre for Agricultural Research, Herman Ottó Rd. 15., H-1022 Budapest, Hungary)

  • Kitti Balog

    (Institute for Soil Sciences, Centre for Agricultural Research, Herman Ottó Rd. 15., H-1022 Budapest, Hungary)

Abstract

Salt meadows, protected within National Parks, cannot be directly surveyed, yet understanding their soil condition is crucial. Our study indirectly estimates soil parameters (Total Salt Content (TSC), Na, and pH) related to salinization/sodification/alkalinization using spectral indices and UAV survey-derived elevation model, focusing on continental lowland salt meadows. A vegetation map was created using 16 spectral indices and a Digital Elevation Model calculated from RGB orthophotos using photogrammetry. Field observations helped define habitat types based on the General National Habitat Classification System (Hungary), and quadrats with complete coverage of specific plant species were identified. Machine learning was employed on 84 training quadrats to develop a prediction algorithm for vegetation patterns. Five saline habitat types, representing variations in soil properties and topography, were identified. Spectral and topomorphometric indices derived from UAV were key to the spatial prediction of soil properties, employing random forest and co-kriging methods. TSC, Na, and pH data served as indicators of salt-affected soils (SAS), and thematic maps were generated for each indicator (57 samples). Overlapping with the vegetation map, the probability range of estimated SAS indicator values was determined. Consequently, a model-based estimation of soil pH, TSC, and Na conditions is provided for habitat types without disturbing protected areas.

Suggested Citation

  • László Pásztor & Katalin Takács & János Mészáros & Gábor Szatmári & Mátyás Árvai & Tibor Tóth & Gyöngyi Barna & Sándor Koós & Zsófia Adrienn Kovács & Péter László & Kitti Balog, 2023. "Indirect Prediction of Salt Affected Soil Indicator Properties through Habitat Types of a Natural Saline Grassland Using Unmanned Aerial Vehicle Imagery," Land, MDPI, vol. 12(8), pages 1-23, July.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:8:p:1516-:d:1206521
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/8/1516/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/8/1516/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wright, Marvin N. & Ziegler, Andreas, 2017. "ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i01).
    2. Azamat Suleymanov & Ilyusya Gabbasova & Mikhail Komissarov & Ruslan Suleymanov & Timur Garipov & Iren Tuktarova & Larisa Belan, 2023. "Random Forest Modeling of Soil Properties in Saline Semi-Arid Areas," Agriculture, MDPI, vol. 13(5), pages 1-11, April.
    3. Kuhn, Max, 2008. "Building Predictive Models in R Using the caret Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 28(i05).
    4. Lijun Mao & Mingshi Li & Wenjuan Shen, 2020. "Remote Sensing Applications for Monitoring Terrestrial Protected Areas: Progress in the Last Decade," Sustainability, MDPI, vol. 12(12), pages 1-27, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joel Podgorski & Oliver Kracht & Luis Araguas-Araguas & Stefan Terzer-Wassmuth & Jodie Miller & Ralf Straub & Rolf Kipfer & Michael Berg, 2024. "Groundwater vulnerability to pollution in Africa’s Sahel region," Nature Sustainability, Nature, vol. 7(5), pages 558-567, May.
    2. Arjan S. Gosal & Janine A. McMahon & Katharine M. Bowgen & Catherine H. Hoppe & Guy Ziv, 2021. "Identifying and Mapping Groups of Protected Area Visitors by Environmental Awareness," Land, MDPI, vol. 10(6), pages 1-14, May.
    3. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    4. Migle Janulaitiene & Vilmantas Gegzna & Lina Baranauskiene & Aistė Bulavaitė & Martynas Simanavicius & Milda Pleckaityte, 2018. "Phenotypic characterization of Gardnerella vaginalis subgroups suggests differences in their virulence potential," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-20, July.
    5. Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
    6. Hirche, Martin & Farris, Paul W. & Greenacre, Luke & Quan, Yiran & Wei, Susan, 2021. "Predicting Under- and Overperforming SKUs within the Distribution–Market Share Relationship," Journal of Retailing, Elsevier, vol. 97(4), pages 697-714.
    7. Vincenzo Cribari & Michael P. Strager & Aaron E. Maxwell & Charles Yuill, 2021. "Landscape Changes in the Southern Coalfields of West Virginia: Multi-Level Intensity Analysis and Surface Mining Transitions in the Headwaters of the Coal River from 1976 to 2016," Land, MDPI, vol. 10(7), pages 1-32, July.
    8. Matthew Harding & Gabriel F. R. Vasconcelos, 2022. "Managers versus Machines: Do Algorithms Replicate Human Intuition in Credit Ratings?," Papers 2202.04218, arXiv.org.
    9. Backer, David & Billing, Trey, 2024. "Forecasting the prevalence of child acute malnutrition using environmental and conflict conditions as leading indicators," World Development, Elsevier, vol. 176(C).
    10. Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
    11. Jie Zhao & Ji Chen & Damien Beillouin & Hans Lambers & Yadong Yang & Pete Smith & Zhaohai Zeng & Jørgen E. Olesen & Huadong Zang, 2022. "Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Piaopiao Chen & Agnès H. Michel & Jianzhi Zhang, 2022. "Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Paulo Infante & Gonçalo Jacinto & Anabela Afonso & Leonor Rego & Pedro Nogueira & Marcelo Silva & Vitor Nogueira & José Saias & Paulo Quaresma & Daniel Santos & Patrícia Góis & Paulo Rebelo Manuel, 2023. "Factors That Influence the Type of Road Traffic Accidents: A Case Study in a District of Portugal," Sustainability, MDPI, vol. 15(3), pages 1-16, January.
    14. Mariana Oliveira & Luís Torgo & Vítor Santos Costa, 2021. "Evaluation Procedures for Forecasting with Spatiotemporal Data," Mathematics, MDPI, vol. 9(6), pages 1-27, March.
    15. Ephrem Habyarimana & Faheem S Baloch, 2021. "Machine learning models based on remote and proximal sensing as potential methods for in-season biomass yields prediction in commercial sorghum fields," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-23, March.
    16. Banks, Jonathan & Rabbani, Arif & Nadkarni, Kabir & Renaud, Evan, 2020. "Estimating parasitic loads related to brine production from a hot sedimentary aquifer geothermal project: A case study from the Clarke Lake gas field, British Columbia," Renewable Energy, Elsevier, vol. 153(C), pages 539-552.
    17. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    18. Alexander Wettstein & Gabriel Jenni & Ida Schneider & Fabienne Kühne & Martin grosse Holtforth & Roberto La Marca, 2023. "Predictors of Psychological Strain and Allostatic Load in Teachers: Examining the Long-Term Effects of Biopsychosocial Risk and Protective Factors Using a LASSO Regression Approach," IJERPH, MDPI, vol. 20(10), pages 1-20, May.
    19. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    20. Daifeng Xiang & Gangsheng Wang & Jing Tian & Wanyu Li, 2023. "Global patterns and edaphic-climatic controls of soil carbon decomposition kinetics predicted from incubation experiments," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:8:p:1516-:d:1206521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.