IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i6p1141-d1158518.html
   My bibliography  Save this article

Morphodynamic Types of the Laptev Sea Coast: A Review

Author

Listed:
  • Alexander I. Kizyakov

    (Faculty of Geography, Cryolithology and Glaciology Department, Lomonosov Moscow State University, 119991 Moscow, Russia)

  • Alexander A. Ermolov

    (Laboratory of Geoecology of the North, Faculty of Geography, Lomonosov Moscow State University, 119991 Moscow, Russia)

  • Alisa V. Baranskaya

    (Laboratory of Geoecology of the North, Faculty of Geography, Lomonosov Moscow State University, 119991 Moscow, Russia)

  • Mikhail N. Grigoriev

    (Laboratory of General Geocryology, Melnikov Permafrost Institute, Siberian Branch of Russian Academy of Sciences, 677010 Yakutsk, Russia)

Abstract

The Laptev Sea coast has a unique high-latitude and dynamic landscape. The presence of low-temperature permafrost (below −7 °C) and its high ice content (up to 90%) determine a wide array of permafrost landforms and features. Under the actions of thermal abrasion and thermal denudation, high rates of coastal retreat are evident within this region. Local differences in the geological structure and sea hydrodynamic conditions determine the diversity of this sea coast’s types. In this review, we present the results of a morphodynamic classification and segmentation of the Laptev Sea coast. The integrated approach used in the classification took into account the leading relief-forming processes that act upon this coastal zone. The research scale of 1:100,000 made it possible to identify and characterize the morphologies of the coast and their spatial distributions within the study area. The presented original classification can be considered to be universal for the eastern Arctic seas of Eurasia; it may be used as a basis for further scientific and applied research.

Suggested Citation

  • Alexander I. Kizyakov & Alexander A. Ermolov & Alisa V. Baranskaya & Mikhail N. Grigoriev, 2023. "Morphodynamic Types of the Laptev Sea Coast: A Review," Land, MDPI, vol. 12(6), pages 1-20, May.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:6:p:1141-:d:1158518
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/6/1141/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/6/1141/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Fritz & Jorien E. Vonk & Hugues Lantuit, 2017. "Collapsing Arctic coastlines," Nature Climate Change, Nature, vol. 7(1), pages 6-7, January.
    2. François Costard & E. Gautier & A. Fedorov & P. Konstantinov & L. Dupeyrat, 2014. "An Assessment of the Erosion Potential of the Fluvial Thermal Process during Ice Breakups of the Lena River (Siberia)," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 25(3), pages 162-171, July.
    3. Edward A. G. Schuur & Jason G. Vogel & Kathryn G. Crummer & Hanna Lee & James O. Sickman & T. E. Osterkamp, 2009. "The effect of permafrost thaw on old carbon release and net carbon exchange from tundra," Nature, Nature, vol. 459(7246), pages 556-559, May.
    4. J. E. Vonk & L. Sánchez-García & B. E. van Dongen & V. Alling & D. Kosmach & A. Charkin & I. P. Semiletov & O. V. Dudarev & N. Shakhova & P. Roos & T. I. Eglinton & A. Andersson & Ö. Gustafsson, 2012. "Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia," Nature, Nature, vol. 489(7414), pages 137-140, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jannik Martens & Birgit Wild & Igor Semiletov & Oleg V. Dudarev & Örjan Gustafsson, 2022. "Circum-Arctic release of terrestrial carbon varies between regions and sources," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Louise Kessler, 2015. "Estimating the economic impact of the permafrost carbon feedback," GRI Working Papers 219, Grantham Research Institute on Climate Change and the Environment.
    3. Haruko M. Wainwright & Rusen Oktem & Baptiste Dafflon & Sigrid Dengel & John B. Curtis & Margaret S. Torn & Jessica Cherry & Susan S. Hubbard, 2021. "High-Resolution Spatio-Temporal Estimation of Net Ecosystem Exchange in Ice-Wedge Polygon Tundra Using In Situ Sensors and Remote Sensing Data," Land, MDPI, vol. 10(7), pages 1-19, July.
    4. Birgit Wild & Natalia Shakhova & Oleg Dudarev & Alexey Ruban & Denis Kosmach & Vladimir Tumskoy & Tommaso Tesi & Hanna Grimm & Inna Nybom & Felipe Matsubara & Helena Alexanderson & Martin Jakobsson & , 2022. "Organic matter composition and greenhouse gas production of thawing subsea permafrost in the Laptev Sea," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Christopher Poeplau & Julia Schroeder & Ed Gregorich & Irina Kurganova, 2019. "Farmers’ Perspective on Agriculture and Environmental Change in the Circumpolar North of Europe and America," Land, MDPI, vol. 8(12), pages 1-18, December.
    6. E. Schuur & B. Abbott & W. Bowden & V. Brovkin & P. Camill & J. Canadell & J. Chanton & F. Chapin & T. Christensen & P. Ciais & B. Crosby & C. Czimczik & G. Grosse & J. Harden & D. Hayes & G. Hugelius, 2013. "Expert assessment of vulnerability of permafrost carbon to climate change," Climatic Change, Springer, vol. 119(2), pages 359-374, July.
    7. Ben Bond-Lamberty & Andrew G Bunn & Allison M Thomson, 2012. "Multi-Year Lags between Forest Browning and Soil Respiration at High Northern Latitudes," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    8. Shijin Wang, 2024. "Opportunities and threats of cryosphere change to the achievement of UN 2030 SDGs," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-13, December.
    9. Junjie Wu & Gesine Mollenhauer & Ruediger Stein & Peter Köhler & Jens Hefter & Kirsten Fahl & Hendrik Grotheer & Bingbing Wei & Seung-Il Nam, 2022. "Deglacial release of petrogenic and permafrost carbon from the Canadian Arctic impacting the carbon cycle," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    10. Moritz Mathis & Fabrice Lacroix & Stefan Hagemann & David Marcolino Nielsen & Tatiana Ilyina & Corinna Schrum, 2024. "Enhanced CO2 uptake of the coastal ocean is dominated by biological carbon fixation," Nature Climate Change, Nature, vol. 14(4), pages 373-379, April.
    11. Jiang Dong & Xuefa Shi & Xun Gong & Anatolii S. Astakhov & Limin Hu & Xiting Liu & Gang Yang & Yixuan Wang & Yuri Vasilenko & Shuqing Qiao & Alexander Bosin & Gerrit Lohmann, 2022. "Enhanced Arctic sea ice melting controlled by larger heat discharge of mid-Holocene rivers," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    12. Creelman, Chance & Risk, Dave, 2011. "Network design for soil CO2 monitoring of the northern North American region," Ecological Modelling, Elsevier, vol. 222(18), pages 3421-3428.
    13. Timur Nizamutdinov & Evgeny Abakumov & Eugeniya Morgun & Rostislav Loktev & Roman Kolesnikov, 2021. "Agrochemical and Pollution Status of Urbanized Agricultural Soils in the Central Part of Yamal Region," Energies, MDPI, vol. 14(14), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:6:p:1141-:d:1158518. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.