IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i5p1095-d1151401.html
   My bibliography  Save this article

Investigating Near-Surface Hydrologic Connectivity in a Grass-Covered Inter-Row Area of a Hillslope Vineyard Using Field Monitoring and Numerical Simulations

Author

Listed:
  • Vedran Krevh

    (Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia)

  • Lana Filipović

    (Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia)

  • Jasmina Defterdarović

    (Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia)

  • Igor Bogunović

    (Department of General Agronomy, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia)

  • Yonggen Zhang

    (Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China)

  • Zoran Kovač

    (Department of Geology and Geological Engineering, Faculty of Mining Geology and Petroleum Engineering, University of Zagreb, 10000 Zagreb, Croatia)

  • Andrew Barton

    (Future Regions Research Centre, Geotechnical and Hydrogeological Engineering Research Group, Federation University, Gippsland, VIC 3841, Australia)

  • Vilim Filipović

    (Department of Soil Amelioration, Faculty of Agriculture, University of Zagreb, 10000 Zagreb, Croatia
    Future Regions Research Centre, Geotechnical and Hydrogeological Engineering Research Group, Federation University, Gippsland, VIC 3841, Australia)

Abstract

The interplay of surface and shallow subsurface fluxes plays a critical role in controlling water movement in hillslope agroecosystems and impacting soil and plant health during prolonged dry periods, demonstrating a need for in-field monitoring. This study was conducted for two years (2021–2022) by combining field monitoring of the grass-covered inter-row area (passive wick lysimeter, surface runoff, and meteorological data), laboratory determination of soil hydraulic properties (SHPs), and numerical modeling with the aim to explore near-surface fluxes at the SUPREHILL Critical Zone Observatory (CZO) located on a hillslope vineyard. Additionally, sensitivity analysis for basic root water uptake (RWU) parameters was conducted. The model was evaluated (R 2 , RMSE, and NSE) with lysimeter (hillslope) and runoff (footslope) data, producing good agreement, but only after the inverse optimization of laboratory estimated hydraulic conductivity was conducted, demonstrating that adequate parameterization is required to capture the hydropedological response of erosion-affected soil systems. Results exhibit the dependence of runoff generation on hydraulic conductivity, rainfall, and soil moisture conditions. The data suggest different soil-rewetting scenarios based on temporal rainfall variability. Sensitivity analysis demonstrated that Leaf Area Index (LAI) was the most responsive parameter determining the RWU. The study offers an approach for the investigation of fluxes in the topsoil for similar sites and/or crops (and covers), presenting the methodology of self-constructed soil–water collection instruments.

Suggested Citation

  • Vedran Krevh & Lana Filipović & Jasmina Defterdarović & Igor Bogunović & Yonggen Zhang & Zoran Kovač & Andrew Barton & Vilim Filipović, 2023. "Investigating Near-Surface Hydrologic Connectivity in a Grass-Covered Inter-Row Area of a Hillslope Vineyard Using Field Monitoring and Numerical Simulations," Land, MDPI, vol. 12(5), pages 1-18, May.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:1095-:d:1151401
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/5/1095/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/5/1095/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Qingming & Wei, Min & Li, Yiman & Feng, Gaili & Wang, Yaping & Li, Shuhao & Zhang, Dalong, 2019. "Effects of soil moisture on water transport, photosynthetic carbon gain and water use efficiency in tomato are influenced by evaporative demand," Agricultural Water Management, Elsevier, vol. 226(C).
    2. Kang, Shaozhong & Zhang, Lu & Liang, Yinli & Hu, Xiaotao & Cai, Huanjie & Gu, Binjie, 2002. "Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 55(3), pages 203-216, June.
    3. Ritter, A. & Hupet, F. & Munoz-Carpena, R. & Lambot, S. & Vanclooster, M., 2003. "Using inverse methods for estimating soil hydraulic properties from field data as an alternative to direct methods," Agricultural Water Management, Elsevier, vol. 59(2), pages 77-96, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meena, Raj Pal & Karnam, Venkatesh & R, Sendhil & Rinki, & Sharma, R.K. & Tripathi, S.C. & Singh, Gyanendra Pratap, 2019. "Identification of water use efficient wheat genotypes with high yield for regions of depleting water resources in India," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    2. Zhang, Buchong & Li, Feng-Min & Huang, Gaobao & Cheng, Zi-Yong & Zhang, Yanhong, 2006. "Yield performance of spring wheat improved by regulated deficit irrigation in an arid area," Agricultural Water Management, Elsevier, vol. 79(1), pages 28-42, January.
    3. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    4. Zhang, Kefeng & Burns, Ian G. & Greenwood, Duncan J. & Hammond, John P. & White, Philip J., 2010. "Developing a reliable strategy to infer the effective soil hydraulic properties from field evaporation experiments for agro-hydrological models," Agricultural Water Management, Elsevier, vol. 97(3), pages 399-409, March.
    5. Singh, Simratpal & Coppi, Luca & Wang, Zijian & Tenuta, Mario & Holländer, Hartmut M., 2019. "Regionalisation of nitrate leaching on pasture land in Southern Manitoba," Agricultural Water Management, Elsevier, vol. 222(C), pages 286-300.
    6. Zhang, Chao & Xie, Ziang & Wang, Qiaojuan & Tang, Min & Feng, Shaoyuan & Cai, Huanjie, 2022. "AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity," Agricultural Water Management, Elsevier, vol. 266(C).
    7. Yan Shan & Mingbin Huang & Paul Harris & Lianhai Wu, 2021. "A Sensitivity Analysis of the SPACSYS Model," Agriculture, MDPI, vol. 11(7), pages 1-30, July.
    8. He, Gang & Wang, Zhaohui & Li, Fucui & Dai, Jian & Li, Qiang & Xue, Cheng & Cao, Hanbing & Wang, Sen & Malhi, Sukhdev S., 2016. "Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 171(C), pages 1-9.
    9. Deng, Xi-Ping & Shan, Lun & Zhang, Heping & Turner, Neil C., 2006. "Improving agricultural water use efficiency in arid and semiarid areas of China," Agricultural Water Management, Elsevier, vol. 80(1-3), pages 23-40, February.
    10. Yu, Xuemei & Niu, Luqi & Zhang, Yuhui & Xu, Zijian & Zhang, Junwei & Zhang, Shuhui & Li, Jianming, 2024. "Vapour pressure deficit affects crop water productivity, yield, and quality in tomatoes," Agricultural Water Management, Elsevier, vol. 299(C).
    11. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    12. Liu, Lining & Wang, Tianshu & Wang, Lichun & Wu, Xun & Zuo, Qiang & Shi, Jianchu & Sheng, Jiandong & Jiang, Pingan & Chen, Quanjia & Ben-Gal, Alon, 2022. "Plant water deficit index-based irrigation under conditions of salinity," Agricultural Water Management, Elsevier, vol. 269(C).
    13. Alberto, Ma. Carmelita R. & Quilty, James R. & Buresh, Roland J. & Wassmann, Reiner & Haidar, Sam & Correa, Teodoro Q. & Sandro, Joseph M., 2014. "Actual evapotranspiration and dual crop coefficients for dry-seeded rice and hybrid maize grown with overhead sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 136(C), pages 1-12.
    14. Ali, Shahzad & Xu, Yueyue & Jia, Qianmin & Ahmad, Irshad & Ma, Xiangcheng & Yan, Zhang & Cai, Tie & Ren, Xiaolong & Zhang, Peng & Jia, Zhikuan, 2018. "Interactive effects of planting models with limited irrigation on soil water, temperature, respiration and winter wheat production under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 204(C), pages 198-211.
    15. Ma, Shou-Chen & Duan, Ai-Wang & Wang, Rui & Guan, Zhong-Mei & Yang, Shen-Jiao & Ma, Shou-Tian & Shao, Yun, 2015. "Root-sourced signal and photosynthetic traits, dry matter accumulation and remobilization, and yield stability in winter wheat as affected by regulated deficit irrigation," Agricultural Water Management, Elsevier, vol. 148(C), pages 123-129.
    16. He, Zhihao & Gong, Kaiyuan & Zhang, Zhiliang & Dong, Wenbiao & Feng, Hao & Yu, Qiang & He, Jianqiang, 2022. "What is the past, present, and future of scientific research on the Yellow River Basin? —A bibliometric analysis," Agricultural Water Management, Elsevier, vol. 262(C).
    17. Seijger, Chris & Chukalla, Abebe & Bremer, Karin & Borghuis, Gerlo & Christoforidou, Maria & Mul, Marloes & Hellegers, Petra & van Halsema, Gerardo, 2023. "Agronomic analysis of WaPOR applications: Confirming conservative biomass water productivity in inherent and climatological variance of WaPOR data outputs," Agricultural Systems, Elsevier, vol. 211(C).
    18. Song Bo & Soumya R. Sahoo & Xunyuan Yin & Jinfeng Liu & Sirish L. Shah, 2020. "Parameter and State Estimation of One-Dimensional Infiltration Processes: A Simultaneous Approach," Mathematics, MDPI, vol. 8(1), pages 1-22, January.
    19. Liu, Yi & Li, Shiqing & Chen, Fang & Yang, Shenjiao & Chen, Xinping, 2010. "Soil water dynamics and water use efficiency in spring maize (Zea mays L.) fields subjected to different water management practices on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 97(5), pages 769-775, May.
    20. Jiang, Tengcong & Wang, Bin & Duan, Xiaoning & Liu, De Li & He, Jianqiang & He, Liang & Jin, Ning & Feng, Hao & Yu, Qiang, 2023. "Prioritizing agronomic practices and uncertainty assessment under climate change for winter wheat in the loess plateau, China," Agricultural Systems, Elsevier, vol. 212(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:5:p:1095-:d:1151401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.