IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i3p679-d1096814.html
   My bibliography  Save this article

Numerical Modeling of Kinetic Features and Stability Analysis of Jinpingzi Landslide

Author

Listed:
  • Jiaxuan Huang

    (Chinese-German Institute of Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China)

  • Weichao Du

    (32023 Troops, Dalian 116023, China)

  • Mowen Xie

    (Department of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China)

Abstract

The kinetic features of a slow-moving landslide situated above the Wudongde hydropower station were analyzed using particle flow code 3D (PFC3D) software. This research was based on geological investigations, remote sensing interpretation, and digital elevation models to build the structure of the Jinpingzi landslide. Finite element analysis (FEM) was used to determine the sliding surface. Strength reduction theory (SRT) and particle flow code coupling were used to invert the macro-strength parameters into micro-strength parameters. Finally, the slope failure process was simulated. Meanwhile, the displacement vector angle (DVA) and velocity were used for stability analysis. The simulation results of the kinetic features of slow-moving landslides show that the initial stage begins with accelerated movement, followed by constant-velocity movement and instability failure. The larger the reduction coefficient is, the shorter the duration of each stage is. A two-parameter instability criterion is proposed based on velocity, DVA, and reduction coefficient. Using this criterion, the critical velocity was 200 mm/s, and the critical DVA was 28.15°. The analysis results agree with the actual field monitoring results and motion process. This work confirms that the PFC3D modeling method is suitable for simulating the motion features of landslides.

Suggested Citation

  • Jiaxuan Huang & Weichao Du & Mowen Xie, 2023. "Numerical Modeling of Kinetic Features and Stability Analysis of Jinpingzi Landslide," Land, MDPI, vol. 12(3), pages 1-17, March.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:3:p:679-:d:1096814
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/3/679/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/3/679/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. S. Wan & T. Lei & T. Chou, 2010. "A novel data mining technique of analysis and classification for landslide problems," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(1), pages 211-230, January.
    2. Xudong Hu & Hongbo Mei & Han Zhang & Yuanyuan Li & Mengdi Li, 2021. "Performance evaluation of ensemble learning techniques for landslide susceptibility mapping at the Jinping county, Southwest China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1663-1689, January.
    3. Zhuo Chen & Danqing Song, 2021. "Numerical investigation of the recent Chenhecun landslide (Gansu, China) using the discrete element method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 717-733, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siti Norsakinah Selamat & Nuriah Abd Majid & Aizat Mohd Taib, 2023. "A Comparative Assessment of Sampling Ratios Using Artificial Neural Network (ANN) for Landslide Predictive Model in Langat River Basin, Selangor, Malaysia," Sustainability, MDPI, vol. 15(1), pages 1-21, January.
    2. Han Du & Danqing Song, 2022. "Investigation of failure prediction of open-pit coal mine landslides containing complex geological structures using the inverse velocity method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2819-2854, April.
    3. Danqing Song & Xuerui Quan & Mengxin Liu & Chun Liu & Weihua Liu & Xiaoyu Wang & Dechao Han, 2022. "Investigation on the Seismic Wave Propagation Characteristics Excited by Explosion Source in High-Steep Rock Slope Site Using Discrete Element Method," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    4. Atta-ur-Rahman & Amir Khan & Andrew Collins & Fareen Qazi, 2011. "Causes and extent of environmental impacts of landslide hazard in the Himalayan region: a case study of Murree, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 413-434, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:3:p:679-:d:1096814. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.