IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i8p1207-d876891.html
   My bibliography  Save this article

Impact of an Uncertain Structural Constraint on Electrical Resistivity Tomography for Water Content Estimation in Landslides

Author

Listed:
  • Jasmin Grifka

    (Department of Geophysics, Institute of Geosciences, University of Bonn, 53113 Bonn, Germany
    Current address: Hydrogeochemistry and Hydrogeology Group, Institute of Geology, Mineralogy and Geophysics, Ruhr-University Bochum, 44801 Bochum, Germany.)

  • Maximilian Weigand

    (Department of Geophysics, Institute of Geosciences, University of Bonn, 53113 Bonn, Germany)

  • Andreas Kemna

    (Department of Geophysics, Institute of Geosciences, University of Bonn, 53113 Bonn, Germany)

  • Thomas Heinze

    (Department of Geophysics, Institute of Geosciences, University of Bonn, 53113 Bonn, Germany
    Current address: Hydrogeochemistry and Hydrogeology Group, Institute of Geology, Mineralogy and Geophysics, Ruhr-University Bochum, 44801 Bochum, Germany.)

Abstract

Geoelectrical methods can be part of early warning systems for landslide-prone hillslopes by giving estimates of the water content distribution. Structurally constrained inversions of geoelectrical data can improve the water content estimation by reducing the smoothness constraint along known lithological boundaries, which is especially important for landslides, as often layers with strongly divergent hydrological parameters and varying electrical signatures are present in landslides. However, any a priori information about those boundaries has an intrinsic uncertainty. A detailed synthetic study and a field investigation are combined to study the influence of misplaced structural constraints and the strength of the smoothness reduction via a coupling coefficient on inversion results of electrical resistivity data. While a well-known lithological boundary with a substantial reduction of the smoothness constraint can significantly improve the inversion result, a flawed constraint can cause strong divergences from the synthetic model. The divergence can even grow above the divergence of a fully smoothed inversion result. For correctly placed structural constraints, a coupling coefficient smaller than 10 − 4 uncovers previously unseen dynamics in the resistivity distribution compared to smoothed inversion results. Uncertain layer boundaries can be included in the inversion process with a larger coupling coefficient to avoid flawed results as long as the uncertainty of the layer thickness is below 20%. The application to field data confirms these findings but is less sensitive to a further reduction of the coupling coefficient, probably due to uncertainties in the structural information.

Suggested Citation

  • Jasmin Grifka & Maximilian Weigand & Andreas Kemna & Thomas Heinze, 2022. "Impact of an Uncertain Structural Constraint on Electrical Resistivity Tomography for Water Content Estimation in Landslides," Land, MDPI, vol. 11(8), pages 1-13, July.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1207-:d:876891
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/8/1207/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/8/1207/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shirin Moradi & Thomas Heinze & Jasmin Budler & Thanushika Gunatilake & Andreas Kemna & Johan Alexander Huisman, 2021. "Combining Site Characterization, Monitoring and Hydromechanical Modeling for Assessing Slope Stability," Land, MDPI, vol. 10(4), pages 1-23, April.
    2. Jane Palmer, 2017. "Creeping earth could hold secret to deadly landslides," Nature, Nature, vol. 548(7668), pages 384-386, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge A. Salinas-Jasso & Juan C. Montalvo-Arrieta & José R. Chapa-Guerrero, 2020. "A dynamic stability analysis for the Olinalá landslide, northeastern Mexico," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 1225-1248, July.
    2. Fabio Luino & Jerome De Graff & Marcella Biddoccu & Francesco Faccini & Michele Freppaz & Anna Roccati & Fabrizio Ungaro & Michele D’Amico & Laura Turconi, 2022. "The Role of Soil Type in Triggering Shallow Landslides in the Alps (Lombardy, Northern Italy)," Land, MDPI, vol. 11(8), pages 1-26, July.
    3. Philipp Marr & Yenny Alejandra Jiménez Donato & Edoardo Carraro & Robert Kanta & Thomas Glade, 2023. "The Role of Historical Data to Investigate Slow-Moving Landslides by Long-Term Monitoring Systems in Lower Austria," Land, MDPI, vol. 12(3), pages 1-22, March.
    4. Enrico Miccadei & Cristiano Carabella & Giorgio Paglia, 2022. "Landslide Hazard and Environment Risk Assessment," Land, MDPI, vol. 11(3), pages 1-5, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1207-:d:876891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.