IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i8p1158-d872336.html
   My bibliography  Save this article

An Evaluation and Promotion Strategy of Green Land Use Benefits in China: A Case Study of the Beijing–Tianjin–Hebei Region

Author

Listed:
  • Wenying Peng

    (School of Urban Economics and Public Administration, Capital University of Economics and Business, Beijing 100070, China)

  • Yue Sun

    (School of Urban Economics and Public Administration, Capital University of Economics and Business, Beijing 100070, China)

  • Yingchen Li

    (School of Urban Economics and Public Administration, Capital University of Economics and Business, Beijing 100070, China
    Beijing Municipal Commission of Planning and Natural Resources, Beijing 101160, China)

  • Xiaojuan Yuchi

    (School of Urban Economics and Public Administration, Capital University of Economics and Business, Beijing 100070, China)

Abstract

Green development is the inevitable choice for global sustainable development, and China has chosen green development as its national strategy. Land use changes will affect a soil’s organic matter by changing the land’s productivity, soil quality and fertility. It is of great significance for ensuring soil fertility, improving the environment and promoting the carbon cycle that the concept of green development is implemented in the process of land use activity. Establishing an indicator system and evaluation method for a green land use benefit evaluation suitable for green development is helpful for strengthening the responsibility and consciousness of such land use, and to provide theoretical guidance and decision-making references for promoting such developments and evaluations. In this study, based on a connotation analysis of green land use, the entropy weight method and BP (Back Propagation) neural network model method were used to construct an evaluation index system for green land use benefits, including four criterion layers and eighteen evaluation indexes, and the entropy-BP neural network evaluation method was proposed to reveal the problems in green land use benefits in the Beijing–Tianjin–Hebei region. The results showed that the green land use benefit level in the region was low, while the spatial pattern was high in the north, low in the middle and high in the south. Langfang, Beijing and Handan were the lowest centers of green land ecological benefit, while Beijing and Tianjin were the lowest centers of green land economic benefit. The green governance benefit and green space benefit were in a relative spatial equilibrium. The cultivated land area, forestry products, sewage centralized treatment degree and built-up area ratio were the most important influences on the green ecological benefit, green economic benefit, green governance benefit and green space benefit, respectively. The entropy-BP neural network evaluation system and method have certain applications in the design of relevant assessment reward-and-punishment systems. Accelerating the optimization of the Beijing–Tianjin–Hebei territorial space’s development and utilization pattern, and constructing a green benefit sharing mechanism of land use, are important strategies to improve the benefits of green land use.

Suggested Citation

  • Wenying Peng & Yue Sun & Yingchen Li & Xiaojuan Yuchi, 2022. "An Evaluation and Promotion Strategy of Green Land Use Benefits in China: A Case Study of the Beijing–Tianjin–Hebei Region," Land, MDPI, vol. 11(8), pages 1-18, July.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1158-:d:872336
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/8/1158/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/8/1158/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baró, Francesc & Gómez-Baggethun, Erik & Haase, Dagmar, 2017. "Ecosystem service bundles along the urban-rural gradient: Insights for landscape planning and management," Ecosystem Services, Elsevier, vol. 24(C), pages 147-159.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianwei Zhu & Jianming Ye & Mengmeng Zhu & Zhe Gao & Miaomiao Li & Mei Wang & Yingbin Li, 2024. "The Evolution Relationship Between Intensive Land Use and Land Ecological Security in the Urban Agglomeration in the Northern Slope of the Tianshan Mountains, Northwest China," Land, MDPI, vol. 13(12), pages 1-21, December.
    2. Linwei Wang & Yixin Hu & Rong Kong, 2023. "The Impact of Bancassurance Interaction on the Adoption Behavior of Green Production Technology in Family Farms: Evidence from China," Land, MDPI, vol. 12(5), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balzan, Mario V & Caruana, Julio & Zammit, Annrica, 2018. "Assessing the capacity and flow of ecosystem services in multifunctional landscapes: Evidence of a rural-urban gradient in a Mediterranean small island state," Land Use Policy, Elsevier, vol. 75(C), pages 711-725.
    2. Chiara Cortinovis & Grazia Zulian & Davide Geneletti, 2018. "Assessing Nature-Based Recreation to Support Urban Green Infrastructure Planning in Trento (Italy)," Land, MDPI, vol. 7(4), pages 1-20, September.
    3. Xiaolu Yan & Xinyuan Li & Chenghao Liu & Jiawei Li & Jingqiu Zhong, 2022. "Scales and Historical Evolution: Methods to Reveal the Relationships between Ecosystem Service Bundles and Socio-Ecological Drivers—A Case Study of Dalian City, China," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    4. Montoya, Daniel & Gaba, Sabrina & de Mazancourt, Claire & Bretagnolle, Vincent & Loreau, Michel, 2020. "Reconciling biodiversity conservation, food production and farmers’ demand in agricultural landscapes," Ecological Modelling, Elsevier, vol. 416(C).
    5. Berglihn, Elisabeth Cornelia & Gómez-Baggethun, Erik, 2021. "Ecosystem services from urban forests: The case of Oslomarka, Norway," Ecosystem Services, Elsevier, vol. 51(C).
    6. Jiayi Zhou & Kangning Xiong & Qi Wang & Jiuhan Tang & Li Lin, 2022. "A Review of Ecological Assets and Ecological Products Supply: Implications for the Karst Rocky Desertification Control," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    7. Rolf, Werner & Diehl, Katharina & Zasada, Ingo & Wiggering, Hubert, 2020. "Integrating farmland in urban green infrastructure planning. An evidence synthesis for informed policymaking," Land Use Policy, Elsevier, vol. 99(C).
    8. Lorilla, Roxanne Suzette & Poirazidis, Konstantinos & Detsis, Vassilis & Kalogirou, Stamatis & Chalkias, Christos, 2020. "Socio-ecological determinants of multiple ecosystem services on the Mediterranean landscapes of the Ionian Islands (Greece)," Ecological Modelling, Elsevier, vol. 422(C).
    9. Alessio Russo & Wing Tung Chan & Giuseppe T. Cirella, 2021. "Estimating Air Pollution Removal and Monetary Value for Urban Green Infrastructure Strategies Using Web-Based Applications," Land, MDPI, vol. 10(8), pages 1-17, July.
    10. Murali, Ranjini & Suryawanshi, Kulbushansingh & Redpath, Stephen & Nagendra, Harini & Mishra, Charudutt, 2019. "Changing use of ecosystem services along a rural-urban continuum in the Indian Trans-Himalayas," Ecosystem Services, Elsevier, vol. 40(C).
    11. Mario V. Balzan & Renata Sadula & Laura Scalvenzi, 2020. "Assessing Ecosystem Services Supplied by Agroecosystems in Mediterranean Europe: A Literature Review," Land, MDPI, vol. 9(8), pages 1-21, July.
    12. Yang Bai & Thomas O. Ochuodho & Jian Yang & Domena A. Agyeman, 2021. "Bundles and Hotspots of Multiple Ecosystem Services for Optimized Land Management in Kentucky, United States," Land, MDPI, vol. 10(1), pages 1-14, January.
    13. Diego Peruchi Trevisan & Mayara Herrmann Ruggiero & Polyanna da Conceição Bispo & Dayana Almeida & Maryam Imani & Heiko Balzter & Luiz Eduardo Moschini, 2021. "Evaluation of Environmental Naturalness: A Case Study in the Tietê-Jacaré Hydrographic Basin, São Paulo, Brazil," Sustainability, MDPI, vol. 13(6), pages 1-18, March.
    14. Zhiheng Yang & Nengneng Shen & Yanbo Qu & Bailin Zhang, 2021. "Association between Rural Land Use Transition and Urban–Rural Integration Development: From 2009 to 2018 Based on County-Level Data in Shandong Province, China," Land, MDPI, vol. 10(11), pages 1-22, November.
    15. Zhao, Mingyue & Peng, Jian & Liu, Yuanxin & Li, Tianyi & Wang, Yanglin, 2018. "Mapping Watershed-Level Ecosystem Service Bundles in the Pearl River Delta, China," Ecological Economics, Elsevier, vol. 152(C), pages 106-117.
    16. Jiansheng Wu & Jiayi Fu & Hongliang Wang & Yuhao Zhao & Tengyun Yi, 2022. "Identifying Spatial Matching between the Supply and Demand of Medical Resource and Accessing Carrying Capacity: A Case Study of Shenzhen, China," IJERPH, MDPI, vol. 19(4), pages 1-22, February.
    17. Giulia Capotorti & Vera De Lazzari & Marta Alós Ortí, 2019. "Local Scale Prioritisation of Green Infrastructure for Enhancing Biodiversity in Peri-Urban Agroecosystems: A Multi-Step Process Applied in the Metropolitan City of Rome (Italy)," Sustainability, MDPI, vol. 11(12), pages 1-20, June.
    18. Alicja Krzemień & Juan José Álvarez Fernández & Pedro Riesgo Fernández & Gregorio Fidalgo Valverde & Silverio Garcia-Cortes, 2022. "Restoring Coal Mining-Affected Areas: The Missing Ecosystem Services," IJERPH, MDPI, vol. 19(21), pages 1-13, October.
    19. Orsi, Francesco & Ciolli, Marco & Primmer, Eeva & Varumo, Liisa & Geneletti, Davide, 2020. "Mapping hotspots and bundles of forest ecosystem services across the European Union," Land Use Policy, Elsevier, vol. 99(C).
    20. Raviv, Orna & Shiri, Zemah-Shamir & Ido, Izhaki & Alon, Lotan, 2021. "The effect of wildfire and land-cover changes on the economic value of ecosystem services in Mount Carmel Biosphere Reserve, Israel," Ecosystem Services, Elsevier, vol. 49(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1158-:d:872336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.