IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i6p911-d839081.html
   My bibliography  Save this article

Insect Outbreak and Long-Term Post-Fire Effects on Soil Erosion in Mediterranean Suburban Forest

Author

Listed:
  • Aristeidis Kastridis

    (Laboratory of Mountainous Water Management and Control, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Dimitrios Stathis

    (Laboratory of Mountainous Water Management and Control, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Marios Sapountzis

    (Laboratory of Mountainous Water Management and Control, School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

  • Georgios Theodosiou

    (School of Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece)

Abstract

Our study was conducted in the suburban forest of Thessaloniki (Seich Sou), which constitutes one of the most significant suburban forests of Greece and is located northeast of Thessaloniki. In 1997, more than the half of the forest area was destroyed by a wildfire, while recently (May 2019), a significant insect outbreak by the bark beetle Tomicus piniperda was detected. The insect action still goes on, while the infestation has destroyed so far more than 300 ha of forest area. Extensive selective logging and removal of infected trees from the forest were carried out in order to mitigate and restrict the outbreak spread. In the current study, silt-fenced erosion plots were installed on representative locations of disturbed (by fire and insect action) and undisturbed areas, in order to quantify the effect of the above-mentioned forest disturbances on soil erosion and correlate the height and intensity of precipitation with the soil erosion rate. The results show that there was no statistically significant increase in soil erosion in the areas of insect outbreak compared with the control plots. However, there was a statistically significant increase in soil erosion in areas where logging works had been applied as an infestation preventive measure. In addition, the study revealed that 25 years after the forest fire, the erosion rate is still at higher level compared with the undisturbed forest areas. This study could be considered as one of the first attempts to evaluate the impact of an insect outbreak infestation on soil erosion, while there is also a great lack of information concerning the assessment of long-term post-fire effects on the soil erosion of a forest ecosystem.

Suggested Citation

  • Aristeidis Kastridis & Dimitrios Stathis & Marios Sapountzis & Georgios Theodosiou, 2022. "Insect Outbreak and Long-Term Post-Fire Effects on Soil Erosion in Mediterranean Suburban Forest," Land, MDPI, vol. 11(6), pages 1-15, June.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:911-:d:839081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/6/911/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/6/911/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chao Liu & Kanghong Wang & Linhai Gao & Yarong Sun & Qinxia Yang & Bozhao Cao & Lin Chen & Dong Xue & Jian Wang, 2022. "Influence of Rainfall Intensity and Slope on Runoff and Sediment Reduction Benefits of Fine Mesh Net on Construction Spoil Deposits," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aristeidis Kastridis & Stella Margiorou & Marios Sapountzis, 2022. "Check-Dams and Silt Fences: Cost-Effective Methods to Monitor Soil Erosion under Various Disturbances in Forest Ecosystems," Land, MDPI, vol. 11(12), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiufen Zhang & Xizhi Lv & Yongxin Ni & Li Ma & Jianwei Wang, 2023. "Slope Runoff Process and Regulation Threshold under the Dual Effects of Rainfall and Vegetation in Loess Hilly and Gully Region," Sustainability, MDPI, vol. 15(9), pages 1-14, May.
    2. Stella Margiorou & Aristeidis Kastridis & Marios Sapountzis, 2022. "Pre/Post-Fire Soil Erosion and Evaluation of Check-Dams Effectiveness in Mediterranean Suburban Catchments Based on Field Measurements and Modeling," Land, MDPI, vol. 11(10), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:6:p:911-:d:839081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.