IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i11p1947-d959845.html
   My bibliography  Save this article

Simulating Soil-Plant-Climate Interactions and Greenhouse Gas Exchange in Boreal Grasslands Using the DNDC Model

Author

Listed:
  • Daniel Forster

    (Natural Resources Institute Finland (Luke), Halolantie 31 A, 71750 Maaninka, Finland)

  • Jia Deng

    (Earth Systems Research Center, Institute for the Study of Earth, Oceans and Space, University of New Hampshire, 39 College Road, Durham, NH 03824, USA)

  • Matthew Tom Harrison

    (Tasmanian Institute of Agriculture, University of Tasmania, Newnham Drive, Launceston, TAS 7248, Australia)

  • Narasinha Shurpali

    (Natural Resources Institute Finland (Luke), Halolantie 31 A, 71750 Maaninka, Finland)

Abstract

With global warming, arable land in boreal regions is tending to expand into high latitude regions in the northern hemisphere. This entails certain risks; such that inappropriate management could result in previously stable carbon sinks becoming sources. Agroecological models are an important tool for assessing the sustainability of long-term management, yet applications of such models in boreal zones are scarce. We collated eddy-covariance, soil climate and biomass data to evaluate the simulation of GHG emissions from grassland in eastern Finland using the process-based model DNDC. We simulated gross primary production (GPP), net ecosystem exchange (NEE) and ecosystem respiration (Reco) with fair performance. Soil climate, soil temperature and soil moisture at 5 cm were excellent, and soil moisture at 20 cm was good. However, the model overestimated NEE and Reco following crop termination and tillage events. These results indicate that DNDC can satisfactorily simulate GHG fluxes in a boreal grassland setting, but further work is needed, particularly in simulated second biomass cuts, the (>20 cm) soil layers and model response to management transitions between crop types, cultivation, and land use change.

Suggested Citation

  • Daniel Forster & Jia Deng & Matthew Tom Harrison & Narasinha Shurpali, 2022. "Simulating Soil-Plant-Climate Interactions and Greenhouse Gas Exchange in Boreal Grasslands Using the DNDC Model," Land, MDPI, vol. 11(11), pages 1-13, November.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:11:p:1947-:d:959845
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/11/1947/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/11/1947/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vogeler, I. & Beukes, P. & Burggraaf, V., 2013. "Evaluation of mitigation strategies for nitrate leaching on pasture-based dairy systems," Agricultural Systems, Elsevier, vol. 115(C), pages 21-28.
    2. Höglind, Mats & Cameron, David & Persson, Tomas & Huang, Xiao & van Oijen, Marcel, 2020. "BASGRA_N: A model for grassland productivity, quality and greenhouse gas balance," Ecological Modelling, Elsevier, vol. 417(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Purola, Tuomo & Lehtonen, Heikki, 2020. "Evaluating profitability of soil-renovation investments under crop rotation constraints in Finland," Agricultural Systems, Elsevier, vol. 180(C).
    2. van der Weerden, T.J. & Laurenson, S. & Vogeler, I. & Beukes, P.C. & Thomas, S.M. & Rees, R.M. & Topp, C.F.E. & Lanigan, G. & de Klein, C.A.M., 2017. "Mitigating nitrous oxide and manure-derived methane emissions by removing cows in response to wet soil conditions," Agricultural Systems, Elsevier, vol. 156(C), pages 126-138.
    3. Vogeler, Iris & Vibart, Ronaldo & Cichota, Rogerio, 2017. "Potential benefits of diverse pasture swards for sheep and beef farming," Agricultural Systems, Elsevier, vol. 154(C), pages 78-89.
    4. Hjelkrem, Anne-Grete Roer & Geipel, Jakob & Bakken, Anne Kjersti & Korsaeth, Audun, 2023. "NORNE, a process-based grass growth model accounting for within-field soil variation using remote sensing for in-season corrections," Ecological Modelling, Elsevier, vol. 483(C).
    5. Doole, Graeme J. & Romera, Alvaro J., 2015. "Trade-offs between profit, production, and environmental footprint on pasture-based dairy farms in the Waikato region of New Zealand," Agricultural Systems, Elsevier, vol. 141(C), pages 14-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:11:p:1947-:d:959845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.