IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i10p1794-d942250.html
   My bibliography  Save this article

Response Characteristics of Soil Erosion to Spatial Conflict in the Production-Living-Ecological Space and Their DrivingMechanism: A Case Study of Dongting Lake Basin in China

Author

Listed:
  • Changchang Liu

    (College of Geographic Sciences, Hunan Normal University, Changsha 410081, China)

  • Chuxiong Deng

    (College of Geographic Sciences, Hunan Normal University, Changsha 410081, China)

  • Zhongwu Li

    (College of Geographic Sciences, Hunan Normal University, Changsha 410081, China)

  • Yaojun Liu

    (College of Geographic Sciences, Hunan Normal University, Changsha 410081, China)

Abstract

Land use conflicts induced by human activities cause accelerated soil erosion. The response of soil erosion to spatial conflict in production-living-ecological space (PLES) is not clearly understood. In this research, models such as PLES spatial conflict, revised universal soil loss equation, bivariate spatial autocorrelation, and an optimal parameter-based geographical detector were used to explore the characteristics and drivers of soil erosion in response to spatial conflict in the PLES of the Dongting Lake watershed. Results show that spatial changes of the PLES first increased and then decreased. Approximately 45% of the area was consistently in moderate or higher conflict levels throughout the study period. The average soil erosion rate showed a decreasing trend for each year except in the period 2000–2005, when moderate erosion increased. The spatial correlation between spatial conflict and soil erosion was found to be in the form of an inverted “U” for the high-high and low-high agglomeration patterns, and a decreasing trend for the high-low ones. Approximately 27% of the area must be traded off between the spatial conflict of the PLES and soil erosion. The influence of GDP and population density was significant. DEM interacted strongly with GDP, NDVI, precipitation, population density, and “return of farmland to forest” policy. Different patterns were formed among the factors through actions such as amplification, mitigation, catalysis, and dependence effects. We propose policy recommendations based on the differences in the driving mechanisms of the respective models.

Suggested Citation

  • Changchang Liu & Chuxiong Deng & Zhongwu Li & Yaojun Liu, 2022. "Response Characteristics of Soil Erosion to Spatial Conflict in the Production-Living-Ecological Space and Their DrivingMechanism: A Case Study of Dongting Lake Basin in China," Land, MDPI, vol. 11(10), pages 1-17, October.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1794-:d:942250
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/10/1794/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/10/1794/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Chen & Hui Fu & Shengtian Chen, 2023. "Multi-Scenario Simulation and Assessment of Ecosystem Service Value at the City Level from the Perspective of “Production–Living–Ecological” Spaces: A Case Study of Haikou, China," Land, MDPI, vol. 12(5), pages 1-21, May.
    2. Xuebin Zhang & Ziyang Wang & Yue Liu & Jing Shi & Hucheng Du, 2023. "Ecological Security Assessment and Territory Spatial Restoration and Management of Inland River Basin—Based on the Perspective of Production–Living–Ecological Space," Land, MDPI, vol. 12(8), pages 1-20, August.
    3. Yuncheng Jiang & Bin Ouyang & Zhigang Yan, 2024. "The Response of Carbon Storage to Multi-Objective Land Use/Cover Spatial Optimization and Vulnerability Assessment," Sustainability, MDPI, vol. 16(6), pages 1-27, March.
    4. Rumeng Yin & Xin Li & Bin Fang, 2023. "The Relationship between the Spatial and Temporal Evolution of Land Use Function and the Level of Economic and Social Development in the Yangtze River Delta," IJERPH, MDPI, vol. 20(3), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1794-:d:942250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.