IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i8p828-d610257.html
   My bibliography  Save this article

Erosion Rate of the Aliano Biancana Badlands Based on a 3D Multi-Temporal High-Resolution Survey and Implications for Wind-Driven Rain

Author

Listed:
  • Antonella Marsico

    (Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari “Aldo Moro“, via E. Orabona, 70125 Bari, Italy)

  • Vincenzo De Santis

    (Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari “Aldo Moro“, via E. Orabona, 70125 Bari, Italy)

  • Domenico Capolongo

    (Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari “Aldo Moro“, via E. Orabona, 70125 Bari, Italy)

Abstract

Biancana badlands are peculiar landforms in the Basilicata region of Italy resulting from the local combination of geological, geomorphological, and climatic settings. The evolution of badlands mainly depends on slope erosion, which is controlled by the angle, exposure, and vegetation of the slope and its interactions with insolation, rain, and wind. Multi-temporal, detailed, high-resolution surveys have led researchers to assess changes in slopes to investigate the spatial distributions of erosion and deposition and the influence of wind-driven rain (WDR). A comparison between two terrestrial laser scanner (TLS) point clouds surveyed during 2006 and 2016 fieldwork showed that the study area suffers from intense erosion that is not spatially uniform on all sides of biancane. By combining slope and exposure data and the cloud of difference (CoD), derived from a 3D model, we showed that all the steepest southern sides of biancane suffered the most intense erosion. Because splash and sheet erosion triggers sediment displacement, the analysis was also focused on the intensity and direction of WDR. We performed a real field experiment analysing erosion rates over 10 years in relation to daily and hourly wind data (direction and speed), and we found that frequent winds of moderate force, combined with moderate to heavy rainfall, contributed to the observed increase in soil erosion when combined with the insolation effect. Our results show how all the considered factors interact in a complex pattern to control the spatial distribution of erosion.

Suggested Citation

  • Antonella Marsico & Vincenzo De Santis & Domenico Capolongo, 2021. "Erosion Rate of the Aliano Biancana Badlands Based on a 3D Multi-Temporal High-Resolution Survey and Implications for Wind-Driven Rain," Land, MDPI, vol. 10(8), pages 1-17, August.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:8:p:828-:d:610257
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/8/828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/8/828/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:8:p:828-:d:610257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.