IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i7p677-d583415.html
   My bibliography  Save this article

Optimal Sampling Intensity in South Korea for a Land-Use Change Matrix Using Point Sampling

Author

Listed:
  • Ga-Hyun Moon

    (Forest ICT Research Center, National Institute of Forest Science, Seoul 02455, Korea)

  • Jong-Su Yim

    (Forest ICT Research Center, National Institute of Forest Science, Seoul 02455, Korea)

  • Na-Hyun Moon

    (Department of Forest, Environment, and System, Kookmin University, Seoul 02707, Korea)

Abstract

To report changes in land use, the forestry sector, and land-use change matrix (LUCM), monitoring is necessary in South Korea to adequately respond to the Post-2020 climate regime. To calculate the greenhouse gas statistics observing the principle of transparency required by the Climate Change Convention, a consistent nationwide land-use classification and LUCM are required. However, in South Korea, land-use information is available from the 5th National Forest Inventory conducted in 2006 onwards; therefore, developing methods to determine historical LUCM information, including the base year required by the Intergovernmnetal Panel on Climate Change (IPCC), is essential. To determine the optimal sampling intensity for measuring systematic land-use changes and to estimate the corresponding area of land-use categories for previously unmeasured years, seven intensities—2 × 2 km to 8 × 8 km—were tested using the areas of the 3rd and 4th aerial photographs in time series for forestland, cropland, grassland, wetland, and settlements, according to their standard deviations and estimates of uncertainty. Analyses of statistical accuracy, statistical efficiency, economic efficiency, and convenience showed that a sampling intensity of 4 × 4 km was ideal. Additionally, the categorized areas of unmeasured land-use years were calculated through linear interpolation and extrapolation. Our LUCM can be utilized for developing a national greenhouse gas inventory.

Suggested Citation

  • Ga-Hyun Moon & Jong-Su Yim & Na-Hyun Moon, 2021. "Optimal Sampling Intensity in South Korea for a Land-Use Change Matrix Using Point Sampling," Land, MDPI, vol. 10(7), pages 1-16, June.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:7:p:677-:d:583415
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/7/677/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/7/677/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dedinec, Aleksandar & Taseska-Gjorgievska, Verica & Markovska, Natasa & Obradovic Grncarovska, Teodora & Duic, Neven & Pop-Jordanov, Jordan & Taleski, Rubin, 2016. "Towards post-2020 climate change regime: Analyses of various mitigation scenarios and contributions for Macedonia," Energy, Elsevier, vol. 94(C), pages 124-137.
    2. Till Pistorius & Sabine Reinecke & Astrid Carrapatoso, 2017. "A historical institutionalist view on merging LULUCF and REDD+ in a post-2020 climate agreement," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 17(5), pages 623-638, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Plazas-Niño, F.A. & Ortiz-Pimiento, N.R. & Montes-Páez, E.G., 2022. "National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Lu, Linlin & Weng, Qihao & Xie, Yanhua & Guo, Huadong & Li, Qingting, 2019. "An assessment of global electric power consumption using the Defense Meteorological Satellite Program-Operational Linescan System nighttime light imagery," Energy, Elsevier, vol. 189(C).
    3. Li, Xiaoyu & Yao, Xilong, 2020. "Can energy supply-side and demand-side policies for energy saving and emission reduction be synergistic?--- A simulated study on China's coal capacity cut and carbon tax," Energy Policy, Elsevier, vol. 138(C).
    4. Mauleón, Ignacio & Hamoudi, Hamid, 2017. "Photovoltaic and wind cost decrease estimation: Implications for investment analysis," Energy, Elsevier, vol. 137(C), pages 1054-1065.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:7:p:677-:d:583415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.