IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i6p650-d577228.html
   My bibliography  Save this article

Prioritization of Sub-Watersheds to Sediment Yield and Evaluation of Best Management Practices in Highland Ethiopia, Finchaa Catchment

Author

Listed:
  • Wakjira Takala Dibaba

    (Hydrology and Applied Meteorology Department, Faculty of Agricultural and Environmental Sciences, University of Rostock, Satower Str. 48, 18059 Rostock, Germany
    Faculty of Civil and Environmental Engineering, Jimma University, Jimma 378, Ethiopia)

  • Tamene Adugna Demissie

    (Faculty of Civil and Environmental Engineering, Jimma University, Jimma 378, Ethiopia)

  • Konrad Miegel

    (Hydrology and Applied Meteorology Department, Faculty of Agricultural and Environmental Sciences, University of Rostock, Satower Str. 48, 18059 Rostock, Germany)

Abstract

Excessive soil loss and sediment yield in the highlands of Ethiopia are the primary factors that accelerate the decline of land productivity, water resources, operation and function of existing water infrastructure, as well as soil and water management practices. This study was conducted at Finchaa catchment in the Upper Blue Nile basin of Ethiopia to estimate the rate of soil erosion and sediment loss and prioritize the most sensitive sub-watersheds using the Soil and Water Assessment Tool (SWAT) model. The SWAT model was calibrated and validated using the observed streamflow and sediment data. The average annual sediment yield (SY) in Finchaa catchment for the period 1990–2015 was 36.47 ton ha −1 yr −1 with the annual yield varying from negligible to about 107.2 ton ha −1 yr −1 . Five sub-basins which account for about 24.83% of the area were predicted to suffer severely from soil erosion risks, with SY in excess of 50 ton ha −1 yr −1 . Only 15.05% of the area within the tolerable rate of loss (below 11 ton ha −1 yr −1 ) was considered as the least prioritized areas for maintenance of crop production. Despite the reasonable reduction of sediment yields by the management scenarios, the reduction by contour farming, slope terracing, zero free grazing and reforestation were still above the tolerable soil loss. Vegetative contour strips and soil bund were significant in reducing SY below the tolerable soil loss, which is equivalent to 63.9% and 64.8% reduction, respectively. In general, effective and sustainable soil erosion management requires not only prioritizations of the erosion hotspots but also prioritizations of the most effective management practices. We believe that the results provided new and updated insights that enable a proactive approach to preserve the soil and reduce land degradation risks that could allow resource regeneration.

Suggested Citation

  • Wakjira Takala Dibaba & Tamene Adugna Demissie & Konrad Miegel, 2021. "Prioritization of Sub-Watersheds to Sediment Yield and Evaluation of Best Management Practices in Highland Ethiopia, Finchaa Catchment," Land, MDPI, vol. 10(6), pages 1-19, June.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:6:p:650-:d:577228
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/6/650/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/6/650/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ephraim Nkonya & Alisher Mirzabaev & Joachim von Braun (ed.), 2016. "Economics of Land Degradation and Improvement – A Global Assessment for Sustainable Development," Springer Books, Springer, number 978-3-319-19168-3, October.
    2. Katherine Tully & Clare Sullivan & Ray Weil & Pedro Sanchez, 2015. "The State of Soil Degradation in Sub-Saharan Africa: Baselines, Trajectories, and Solutions," Sustainability, MDPI, vol. 7(6), pages 1-30, May.
    3. Yilma, Aster Denekew & Awulachew, Seleshi Bekele, 2009. "Characterization and atlas of the Blue Nile Basin and its sub basins," Conference Papers h042502, International Water Management Institute.
    4. Wakjira Takala Dibaba & Tamene Adugna Demissie & Konrad Miegel, 2020. "Drivers and Implications of Land Use/Land Cover Dynamics in Finchaa Catchment, Northwestern Ethiopia," Land, MDPI, vol. 9(4), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Urgessa Kenea & Dereje Adeba & Motuma Shiferaw Regasa & Michael Nones, 2021. "Hydrological Responses to Land Use Land Cover Changes in the Fincha’a Watershed, Ethiopia," Land, MDPI, vol. 10(9), pages 1-23, August.
    2. Wakjira Takala Dibaba & Dessalegn Geleta Ebsa, 2022. "Identifying Erosion Hot Spot Areas And Evaluation Of Best Management Practices In The Toba Watershed, Ethiopia," Water Conservation & Management (WCM), Zibeline International Publishing, vol. 6(1), pages 30-38, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alelgn Ewunetu & Belay Simane & Ermias Teferi & Benjamin F. Zaitchik, 2021. "Land Cover Change in the Blue Nile River Headwaters: Farmers’ Perceptions, Pressures, and Satellite-Based Mapping," Land, MDPI, vol. 10(1), pages 1-25, January.
    2. Zvirgzdiņš Jānis & Plotka Kaspars & Geipele Sanda, 2018. "Eco-Economics in Cities and Rural Areas," Baltic Journal of Real Estate Economics and Construction Management, Sciendo, vol. 6(1), pages 88-99, July.
    3. Diane L. Haase & Karma Bouzza & Lucy Emerton & James B. Friday & Becca Lieberg & Arnulfo Aldrete & Anthony S. Davis, 2021. "The High Cost of the Low-Cost Polybag System: A Review of Nursery Seedling Production Systems," Land, MDPI, vol. 10(8), pages 1-19, August.
    4. Berazneva, Julia & McBride, Linden & Sheahan, Megan & Güereña, David, 2018. "Empirical assessment of subjective and objective soil fertility metrics in east Africa: Implications for researchers and policy makers," World Development, Elsevier, vol. 105(C), pages 367-382.
    5. Azamat Azarov & Roy C. Sidle & Dietrich Darr & Vladimir Verner & Zbynek Polesny, 2024. "A Proposed Typology of Farming Systems for Assessing Sustainable Livelihood Development Pathways in the Tien Shan Mountains of Kyrgyzstan," Land, MDPI, vol. 13(2), pages 1-18, January.
    6. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    7. Mohamed A. M. Abd Elbasit & Jasper Knight & Gang Liu & Majed M. Abu-Zreig & Rashid Hasaan, 2021. "Valuation of Ecosystem Services in South Africa, 2001–2019," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    8. Wakjira Takala Dibaba & Dessalegn Geleta Ebsa, 2022. "Identifying Erosion Hot Spot Areas And Evaluation Of Best Management Practices In The Toba Watershed, Ethiopia," Water Conservation & Management (WCM), Zibeline International Publishing, vol. 6(1), pages 30-38, February.
    9. Tilahun Amede & Aggie Asiimwe Konde & Jean Jacques Muhinda & George Bigirwa, 2023. "Sustainable Farming in Practice: Building Resilient and Profitable Smallholder Agricultural Systems in Sub-Saharan Africa," Sustainability, MDPI, vol. 15(7), pages 1-16, March.
    10. Petan Hamazakaza & Gillian Kabwe & Elias Kuntashula & Anthony Egeru & Robert Asiimwe, 2022. "Adoption of Sustainable Agriculture Intensification in Maize-Based Farming Systems of Katete District in Zambia," Land, MDPI, vol. 11(6), pages 1-15, June.
    11. Mugizi, Francisco M.P. & Matsumoto, Tomoya, 2021. "A curse or a blessing? Population pressure and soil quality in Sub-Saharan Africa: Evidence from rural Uganda," Ecological Economics, Elsevier, vol. 179(C).
    12. Muok, Benard Oula & Mosberg, Marianne & Eriksen, Siri Ellen Hallstrøm & Ong'ech, Dennis Onyango, 2021. "The politics of forest governance in a changing climate: Political reforms, conflict and socio-environmental changes in Laikipia, Kenya," Forest Policy and Economics, Elsevier, vol. 132(C).
    13. Purushothaman Chirakkuzhyil Abhilash, 2021. "Restoring the Unrestored: Strategies for Restoring Global Land during the UN Decade on Ecosystem Restoration (UN-DER)," Land, MDPI, vol. 10(2), pages 1-19, February.
    14. Emmanuel Damilola Aweda & Appollonia Aimiosino Okhimamhe & Rotimi Oluseyi Obateru & Alina Schürmann & Mike Teucher & Christopher Conrad, 2024. "Assessing the Impacts of Migration on Land Degradation in the Savannah Region of Nigeria," Sustainability, MDPI, vol. 16(18), pages 1-22, September.
    15. Berazneva, Julia & McBride, Linden & Sheahan, Megan & Guerena, David, 2016. "Perceived, measured, and estimated soil fertility in east Africa: Implications for farmers and researchers," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235466, Agricultural and Applied Economics Association.
    16. Elias M. A. Militao & Elsa M. Salvador & José P. Silva & Olalekan A. Uthman & Stig Vinberg & Gloria Macassa, 2022. "Coping Strategies for Household Food Insecurity, and Perceived Health in an Urban Community in Southern Mozambique: A Qualitative Study," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    17. Zeleke Asaye & Dong-Gill Kim & Fantaw Yimer & Katharina Prost & Oukula Obsa & Menfese Tadesse & Mersha Gebrehiwot & Nicolas Brüggemann, 2022. "Effects of Combined Application of Compost and Mineral Fertilizer on Soil Carbon and Nutrient Content, Yield, and Agronomic Nitrogen Use Efficiency in Maize-Potato Cropping Systems in Southern Ethiopi," Land, MDPI, vol. 11(6), pages 1-20, May.
    18. Xuerou Weng & Boen Zhang & Jinxin Zhu & Dagang Wang & Jianxiu Qiu, 2023. "Assessing Land Use and Climate Change Impacts on Soil Erosion Caused by Water in China," Sustainability, MDPI, vol. 15(10), pages 1-16, May.
    19. Pascal Blaise Tchida & Albert Ngakou & Raimund Kesel & Hartmut Koehler, 2021. "Changes in the Physico-Chemical Properties of Degraded Soils in Response to the ReviTec Approach Applied at Gawel (Far-North Cameroon)," Sustainability, MDPI, vol. 14(1), pages 1-22, December.
    20. Meseret C. Abate & Zhen He & Baozhong Cai & Yuangji Huang & Geremew Betelhemabraham & Tesfaye Bayu & Amsalu K. Addis, 2024. "Environmental Impact of Agricultural Land Transfer in China: A Systematic Review on Sustainability," Sustainability, MDPI, vol. 16(15), pages 1-25, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:6:p:650-:d:577228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.