IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i1p56-d477876.html
   My bibliography  Save this article

Functional Coupling Degree and Human Activity Intensity of Production–Living–Ecological Space in Underdeveloped Regions in China: Case Study of Guizhou Province

Author

Listed:
  • Xuesong Zhang

    (Key Laboratory of Geographical Process Analysis and Simulation, Central China Normal University, Wuhan 430079, China
    The College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China)

  • Zijin Xu

    (Key Laboratory of Geographical Process Analysis and Simulation, Central China Normal University, Wuhan 430079, China
    The College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China
    Graduate School, Guizhou University of Finance and Economics, Guiyang 550025, China)

Abstract

(1) Background: Clarify the coordinated development level of production, living, and ecological spaces in the underdeveloped areas of China and their relationship with the intensity of human activity. Explore and address the problems that are likely to be faced when developing these areas and improve the quality of China’s new urbanization development. Promote the coordinated and sustainable development of the economy, society and ecology in underdeveloped areas. Guizhou Province is located in southwest China; the landform is broken and complex. Its economic development level is low. It is one of the representatives of underdeveloped areas in China. Therefore, Guizhou Province of China was selected as the study area. (2) Methods: This paper constructs the evaluation index system of the production–living–ecological space (PLES) functional system in China’s underdeveloped areas, and uses the coupling coordination degree model to measure the development coordination level of the study area. The human activity intensity model was used to calculate the human activity intensity in the study area. Response index is introduced to analyze the relationship between the spatial function coupling coordination degree and the intensity of human activities. (3) Results: Before 2015, the level of functional coupling coordination degree of production–living–ecological space (PLES) in the study area fluctuated, and after 2015, it showed a stable and coordinated development trend. The intensity of human activity continues to increase, and the interaction between human activity and local production–living–ecological space (PLES) function coupling coordination is intense. (4) Conclusions: human activity is a significant factor affecting regional, coordinated and sustainable development. In less developed areas, the impact of human activity is more obvious. Human activity, in combination with the theory of the human–land relationship and the moderate intensity of human activity, are important ways to improve the coordinated and sustainable development of underdeveloped regions.

Suggested Citation

  • Xuesong Zhang & Zijin Xu, 2021. "Functional Coupling Degree and Human Activity Intensity of Production–Living–Ecological Space in Underdeveloped Regions in China: Case Study of Guizhou Province," Land, MDPI, vol. 10(1), pages 1-13, January.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:1:p:56-:d:477876
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/1/56/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/1/56/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. L. Rachel Ngai & Christopher A. Pissarides, 2007. "Structural Change in a Multisector Model of Growth," American Economic Review, American Economic Association, vol. 97(1), pages 429-443, March.
    2. Tiangui Lv & Li Wang & Xinmin Zhang & Hualin Xie & Hua Lu & Hongyi Li & Wangda Liu & Yanwei Zhang, 2019. "Coupling Coordinated Development and Exploring Its Influencing Factors in Nanchang, China: From the Perspectives of Land Urbanization and Population Urbanization," Land, MDPI, vol. 8(12), pages 1-17, November.
    3. Lingming Chen & Wenzhong Ye & Congjia Huo & Kieran James, 2020. "Environmental Regulations, the Industrial Structure, and High-Quality Regional Economic Development: Evidence from China," Land, MDPI, vol. 9(12), pages 1-22, December.
    4. Jiangjun Wan & Yi Su & Huanglin Zan & Yutong Zhao & Lingqing Zhang & Shaoyao Zhang & Xiangyu Dong & Wei Deng, 2020. "Land Functions, Rural Space Governance, and Farmers’ Environmental Perceptions: A Case Study from the Huanjiang Karst Mountain Area, China," Land, MDPI, vol. 9(5), pages 1-19, April.
    5. Qianru Chen & Hualin Xie, 2019. "Temporal-Spatial Differentiation and Optimization Analysis of Cultivated Land Green Utilization Efficiency in China," Land, MDPI, vol. 8(11), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuchun Wang & Xiaoyan Lu & Jie Zhang & Yunfeng Ruan & Bingyi Wang, 2023. "Spatiotemporal Distributions of Multiple Land Use Functions and Their Coupling Coordination Degree in the Yangtze River Delta Urban Agglomeration, China," Sustainability, MDPI, vol. 15(12), pages 1-19, June.
    2. Lanyi Wei & Yanjun Zhang & Lingzhi Wang & Zilang Cheng & Xuying Wu, 2022. "Obstacle Indicators Diagnosis and Advantage Functions Zoning Optimization Based on “Production-Living-Ecological” Functions of National Territory Space in Jilin Province," Sustainability, MDPI, vol. 14(7), pages 1-23, April.
    3. Ling Cheng & Haiyang Cui & Tian Liang & Dan Huang & Yuanxia Su & Zhiyong Zhang & Chuanhao Wen, 2023. "Study on the Trade-Off Synergy Relationship of “Production-Living-Ecological” Functions in Chinese Counties: A Case Study of Chongqing Municipality," Land, MDPI, vol. 12(5), pages 1-27, May.
    4. Huan Wang & Chao Zhang & Li Li & Wenju Yun & Jiani Ma & Lulu Gao, 2021. "Delimitating the Ecological Spaces for Water Conservation Services in Jilin Province of China," Land, MDPI, vol. 10(10), pages 1-17, September.
    5. Tianyi Zhao & Yuning Cheng & Yiyang Fan & Xiangnan Fan, 2022. "Functional Tradeoffs and Feature Recognition of Rural Production–Living–Ecological Spaces," Land, MDPI, vol. 11(7), pages 1-27, July.
    6. Yanbo Qu & Xiaozhen Dong & Lingyun Zhan & Weiya Zhu & Sen Wang & Zongli Ping & Bailin Zhang, 2022. "Achieving rural revitalization in China: A suitable framework to understand the coordination of material and social space quality of rural residential areas in the plain," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1052-1081, September.
    7. Gang Lin & Jingying Fu & Dong Jiang, 2021. "Production–Living–Ecological Conflict Identification Using a Multiscale Integration Model Based on Spatial Suitability Analysis and Sustainable Development Evaluation: A Case Study of Ningbo, China," Land, MDPI, vol. 10(4), pages 1-13, April.
    8. Shiwen Zhang & Yan Wang & Chengrong Li & Yang Wu & Yuhang Yin & Chao Zhang, 2023. "The Response of Rocky Desertification to the Development of Road Networks in Karst Ecologically Fragile Areas," IJERPH, MDPI, vol. 20(4), pages 1-20, February.
    9. Huanyu Xu & Hao Sun & Tian Zhang & Zhenheng Xu & Dan Wu & Ling Wu, 2023. "Remote Sensing Study on the Coupling Relationship between Regional Ecological Environment and Human Activities: A Case Study of Qilian Mountain National Nature Reserve," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    10. Changchun Feng & Hao Zhang & Liang Xiao & Yongpei Guo, 2022. "Land Use Change and Its Driving Factors in the Rural–Urban Fringe of Beijing: A Production–Living–Ecological Perspective," Land, MDPI, vol. 11(2), pages 1-18, February.
    11. Xinghua Cui & Ning Xu & Wanxu Chen & Guanzheng Wang & Jiale Liang & Sipei Pan & Binqiao Duan, 2022. "Spatio-Temporal Variation and Influencing Factors of the Coupling Coordination Degree of Production-Living-Ecological Space in China," IJERPH, MDPI, vol. 19(16), pages 1-26, August.
    12. Xuelan Li & Jiyu Jiang & Javier Cifuentes-Faura, 2023. "Coordinated Development and Sustainability of the Agriculture, Climate and Society System in China: Based on the PLE Analysis Framework," Land, MDPI, vol. 12(3), pages 1-19, March.
    13. Ning Xu & Wanxu Chen & Sipei Pan & Jiale Liang & Jiaojiao Bian, 2022. "Evolution Characteristics and Formation Mechanism of Production-Living-Ecological Space in China: Perspective of Main Function Zones," IJERPH, MDPI, vol. 19(16), pages 1-19, August.
    14. Rong Wang & Jinlong Wang & Wenhao Chen, 2023. "The Coordinated Development of Ecosystem Services and Farming Household Livelihood Security: A Case Study of the Dongting Lake Area in China," Sustainability, MDPI, vol. 15(14), pages 1-18, July.
    15. Guangliang Zhou & Di Zhang & Qian Zhou & Tao Shi, 2022. "Study on the Spatiotemporal Evolution Characteristics of the “Production–Living–Ecology” Space in the Yellow River Basin and Its Driving Factors," Sustainability, MDPI, vol. 14(22), pages 1-26, November.
    16. Hongji Chen & Qingyuan Yang & Kangchuan Su & Haozhe Zhang & Dan Lu & Hui Xiang & Lulu Zhou, 2021. "Identification and Optimization of Production-Living-Ecological Space in an Ecological Foundation Area in the Upper Reaches of the Yangtze River: A Case Study of Jiangjin District of Chongqing, China," Land, MDPI, vol. 10(8), pages 1-19, August.
    17. Lei Yan & Kairong Hong & Hui Li, 2021. "Transfer of Land Use Rights in Rural China and Farmers’ Utility: How to Select an Optimal Payment Mode of Land Increment Income," Land, MDPI, vol. 10(5), pages 1-22, April.
    18. Fu, Jingying & Bu, Ziqiang & Jiang, Dong & Lin, Gang & Li, Xiang, 2022. "Sustainable land use diagnosis based on the perspective of production–living–ecological spaces in China," Land Use Policy, Elsevier, vol. 122(C).
    19. Teng Zhang & Yixuan Sun & Mei Guan & Jieming Kang & Baolei Zhang, 2022. "Human Activity Intensity in China under Multi-Factor Interactions: Spatiotemporal Characteristics and Influencing Factors," Sustainability, MDPI, vol. 14(5), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ngai, L. Rachel & Pissarides, Christopher A., 2009. "Welfare policy and the distribution of hours of work," LSE Research Online Documents on Economics 28698, London School of Economics and Political Science, LSE Library.
    2. Burda, Michael C. & Zessner-Spitzenberg, Leopold, 2024. "Greenhouse Gas Mitigation and Price-Driven Growth in a Solow-Swan Economy with an Environmental Limit," IZA Discussion Papers 16771, Institute of Labor Economics (IZA).
    3. Lingzhang Kong & Jinye Li, 2022. "Digital Economy Development and Green Economic Efficiency: Evidence from Province-Level Empirical Data in China," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    4. Dennis C. Hutschenreiter & Tommaso Santini & Eugenia Vella, 2022. "Automation and sectoral reallocation," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 13(1), pages 335-362, May.
    5. Yi Li, 2020. "Internet Development and Structural Transformation: Evidence from China," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 10(1), pages 1-8.
    6. Andrew Foerster & Andreas Hornstein & Pierre-Daniel G. Sarte & Mark W. Watson, 2019. "Aggregate Implications of Changing Sectoral Trends," Working Paper 19-11, Federal Reserve Bank of Richmond.
    7. Storesletten, Kjetil & Zhao, Bo & Zilibotti, Fabrizio, 2020. "Business Cycle during Structural Change: Arthur Lewis’ Theory from a Neoclassical Perspective," CEPR Discussion Papers 14964, C.E.P.R. Discussion Papers.
    8. Ying Zhang & Yingli Huang, 2023. "Killing Two Birds with One Stone or Missing One of Them? The Synergistic Governance Effect of China’s Carbon Emissions Trading Scheme on Pollution Control and Carbon Emission Reduction," Sustainability, MDPI, vol. 15(13), pages 1-25, June.
    9. Herrendorf, Berthold & Rogerson, Richard & Valentinyi, Ákos, 2014. "Growth and Structural Transformation," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 6, pages 855-941, Elsevier.
    10. repec:zbw:rwirep:0005 is not listed on IDEAS
    11. Fei Tao & Guoan Tang & Yihao Wu & Tong Zhou, 2022. "Spatiotemporal Heterogeneity and Driving Mechanism of Co-Ordinated Urban Development: A Case Study of the Central Area of the Yangtze River Delta, China," Sustainability, MDPI, vol. 14(9), pages 1-23, April.
    12. Yao Zhao & Xuena Kong & Mahmood Ahmad & Zahoor Ahmed, 2023. "Digital Economy, Industrial Structure, and Environmental Quality: Assessing the Roles of Educational Investment, Green Innovation, and Economic Globalization," Sustainability, MDPI, vol. 15(3), pages 1-24, January.
    13. Dalila Nicet-Chenaf & Eric Rougier, 2009. "Human capital and structural change: how do they interact with each others in growth," Post-Print hal-00798441, HAL.
    14. Simon Alder & Timo Boppart & Andreas Müller, 2022. "A Theory of Structural Change That Can Fit the Data," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(2), pages 160-206, April.
    15. Alonso-Carrera, Jaime & Raurich, Xavier, 2015. "Demand-based structural change and balanced economic growth," Journal of Macroeconomics, Elsevier, vol. 46(C), pages 359-374.
    16. Paula Bustos & Juan Manuel Castro Vincenzi & Joan Monras & Jacopo Ponticelli, 2019. "Structural Transformation, Industrial Specialization, and Endogenous Growth," Working Papers wp2019_1906, CEMFI.
    17. Edgar Cruz & Xavier Raurich, 2020. "Leisure time and the sectoral composition of employment," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 38, pages 198-219, October.
    18. Lucian-Liviu ALBU, 2011. "Structural Changes and Convergence in EU and in Adriatic-Balkans Region," Romanian Journal of Economics, Institute of National Economy, vol. 32(1(41)), pages 78-96, June.
    19. Tasso Adamopoulos, 2011. "Transportation Costs, Agricultural Productivity, And Cross‐Country Income Differences," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(2), pages 489-521, May.
    20. Aimable Nsabimana & Patricia Funjika, 2019. "Mobile phone use, productivity and labour market in Tanzania," WIDER Working Paper Series wp-2019-71, World Institute for Development Economic Research (UNU-WIDER).
    21. Manogna R. L. & Aswini Kumar Mishra, 2022. "Agricultural production efficiency of Indian states: Evidence from data envelopment analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4244-4255, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:1:p:56-:d:477876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.