IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v17y2024i7p279-d1428174.html
   My bibliography  Save this article

Advanced Statistical Analysis of the Predicted Volatility Levels in Crypto Markets

Author

Listed:
  • Vadim Azhmyakov

    (1ex Corporation, Dubai P.O. Box 9305, United Arab Emirates
    These authors contributed equally to this work.)

  • Ilya Shirokov

    (1ex Corporation, Dubai P.O. Box 9305, United Arab Emirates
    These authors contributed equally to this work.)

  • Luz Adriana Guzman Trujillo

    (LARIS, Université d’Angers, 49000 Angers, France
    These authors contributed equally to this work.)

Abstract

Our paper deals with an advanced statistical tool for the volatility prediction problem in financial (crypto) markets. First, we consider the conventional GARCH-based volatility models. Next, we extend the corresponding GARCH-based forecasting and calculate a specific probability associated with the predicted volatility levels. As the probability evaluation is based on a stochastic model, we develop an advanced data-driven estimation of this probability. The novel statistical estimation we propose uses real market data. The obtained analytical results for the statistical probability of the levels are also discussed in the framework of the integrated volatility concept. The possible application of the established probability estimation approach to the volatility clustering problem is also mentioned. Our paper includes a concrete implementation of the proposed volatility prediction tool and considers a novel trading and volatility estimation module for crypto markets recently developed by the 1ex Trading Board group in collaboration with GoldenGate Venture. We also briefly discuss the possible application of a model combined with the data-driven volatility prediction methodology to financial risk management.

Suggested Citation

  • Vadim Azhmyakov & Ilya Shirokov & Luz Adriana Guzman Trujillo, 2024. "Advanced Statistical Analysis of the Predicted Volatility Levels in Crypto Markets," JRFM, MDPI, vol. 17(7), pages 1-15, July.
  • Handle: RePEc:gam:jjrfmx:v:17:y:2024:i:7:p:279-:d:1428174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/17/7/279/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/17/7/279/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Venelina Nikolova & Juan E. Trinidad Segovia & Manuel Fernández-Martínez & Miguel Angel Sánchez-Granero, 2020. "A Novel Methodology to Calculate the Probability of Volatility Clusters in Financial Series: An Application to Cryptocurrency Markets," Mathematics, MDPI, vol. 8(8), pages 1-15, July.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    4. Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
    5. Kim, Tae-Hwan & White, Halbert, 2004. "On more robust estimation of skewness and kurtosis," Finance Research Letters, Elsevier, vol. 1(1), pages 56-73, March.
    6. Franses, Philip Hans & Ghijsels, Hendrik, 1999. "Additive outliers, GARCH and forecasting volatility," International Journal of Forecasting, Elsevier, vol. 15(1), pages 1-9, February.
    7. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    8. Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles, Amélie & Darné, Olivier, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Energy Economics, Elsevier, vol. 67(C), pages 508-519.
    2. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    3. Vanden, Joel M., 2005. "Equilibrium analysis of volatility clustering," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 374-417, June.
    4. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    5. Anatolyev Stanislav, 2019. "Volatility filtering in estimation of kurtosis (and variance)," Dependence Modeling, De Gruyter, vol. 7(1), pages 1-23, February.
    6. Loredana Ureche-Rangau & Franck Speeg, 2011. "A simple method for variance shift detection at unknown time points," Economics Bulletin, AccessEcon, vol. 31(3), pages 2204-2218.
    7. Anders Wilhelmsson, 2006. "Garch forecasting performance under different distribution assumptions," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(8), pages 561-578.
    8. Subbotin, Alexandre, 2009. "Volatility Models: from Conditional Heteroscedasticity to Cascades at Multiple Horizons," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 15(3), pages 94-138.
    9. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    10. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    11. Doornik, Jurgen A. & Ooms, Marius, 2008. "Multimodality in GARCH regression models," International Journal of Forecasting, Elsevier, vol. 24(3), pages 432-448.
    12. Conrad, Christian & Mammen, Enno, 2016. "Asymptotics for parametric GARCH-in-Mean models," Journal of Econometrics, Elsevier, vol. 194(2), pages 319-329.
    13. Javed Farrukh & Podgórski Krzysztof, 2017. "Tail Behavior and Dependence Structure in the APARCH Model," Journal of Time Series Econometrics, De Gruyter, vol. 9(2), pages 1-48, July.
    14. Bauer, Rob M M J & Nieuwland, Frederick G M C & Verschoor, Willem F C, 1994. "German Stock Market Dynamics," Empirical Economics, Springer, vol. 19(3), pages 397-418.
    15. Thomas Theobald, 2015. "Agent-based risk management – a regulatory approach to financial markets," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 42(5), pages 780-820, October.
    16. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    17. Claudio Bonilla & Jean Sepulveda, 2011. "Stock returns in emerging markets and the use of GARCH models," Applied Economics Letters, Taylor & Francis Journals, vol. 18(14), pages 1321-1325.
    18. Chuong Luong & Nikolai Dokuchaev, 2018. "Forecasting of Realised Volatility with the Random Forests Algorithm," JRFM, MDPI, vol. 11(4), pages 1-15, October.
    19. Grané, Aurea & Veiga, Helena, 2010. "Outliers in Garch models and the estimation of risk measures," DES - Working Papers. Statistics and Econometrics. WS ws100502, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Peter Christoffersen & Ruslan Goyenko & Kris Jacobs & Mehdi Karoui, 2018. "Illiquidity Premia in the Equity Options Market," The Review of Financial Studies, Society for Financial Studies, vol. 31(3), pages 811-851.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:17:y:2024:i:7:p:279-:d:1428174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.