IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v17y2024i7p279-d1428174.html
   My bibliography  Save this article

Advanced Statistical Analysis of the Predicted Volatility Levels in Crypto Markets

Author

Listed:
  • Vadim Azhmyakov

    (1ex Corporation, Dubai P.O. Box 9305, United Arab Emirates
    These authors contributed equally to this work.)

  • Ilya Shirokov

    (1ex Corporation, Dubai P.O. Box 9305, United Arab Emirates
    These authors contributed equally to this work.)

  • Luz Adriana Guzman Trujillo

    (LARIS, Université d’Angers, 49000 Angers, France
    These authors contributed equally to this work.)

Abstract

Our paper deals with an advanced statistical tool for the volatility prediction problem in financial (crypto) markets. First, we consider the conventional GARCH-based volatility models. Next, we extend the corresponding GARCH-based forecasting and calculate a specific probability associated with the predicted volatility levels. As the probability evaluation is based on a stochastic model, we develop an advanced data-driven estimation of this probability. The novel statistical estimation we propose uses real market data. The obtained analytical results for the statistical probability of the levels are also discussed in the framework of the integrated volatility concept. The possible application of the established probability estimation approach to the volatility clustering problem is also mentioned. Our paper includes a concrete implementation of the proposed volatility prediction tool and considers a novel trading and volatility estimation module for crypto markets recently developed by the 1ex Trading Board group in collaboration with GoldenGate Venture. We also briefly discuss the possible application of a model combined with the data-driven volatility prediction methodology to financial risk management.

Suggested Citation

  • Vadim Azhmyakov & Ilya Shirokov & Luz Adriana Guzman Trujillo, 2024. "Advanced Statistical Analysis of the Predicted Volatility Levels in Crypto Markets," JRFM, MDPI, vol. 17(7), pages 1-15, July.
  • Handle: RePEc:gam:jjrfmx:v:17:y:2024:i:7:p:279-:d:1428174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/17/7/279/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/17/7/279/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    2. Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
    3. Venelina Nikolova & Juan E. Trinidad Segovia & Manuel Fernández-Martínez & Miguel Angel Sánchez-Granero, 2020. "A Novel Methodology to Calculate the Probability of Volatility Clusters in Financial Series: An Application to Cryptocurrency Markets," Mathematics, MDPI, vol. 8(8), pages 1-15, July.
    4. Schwert, G William, 1990. "Stock Volatility and the Crash of '87," The Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 77-102.
    5. Kim, Tae-Hwan & White, Halbert, 2004. "On more robust estimation of skewness and kurtosis," Finance Research Letters, Elsevier, vol. 1(1), pages 56-73, March.
    6. Franses, Philip Hans & Ghijsels, Hendrik, 1999. "Additive outliers, GARCH and forecasting volatility," International Journal of Forecasting, Elsevier, vol. 15(1), pages 1-9, February.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tim Bollerslev & Ray Y. Chou & Narayanan Jayaraman & Kenneth F. Kroner - L, 1991. "es modéles ARCH en finance : un point sur la théorie et les résultats empiriques," Annals of Economics and Statistics, GENES, issue 24, pages 1-59.
    2. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    3. repec:adr:anecst:y:1991:i:24:p:01 is not listed on IDEAS
    4. Carl H. Korkpoe & Peterson Owusu Junior, 2018. "Behaviour of Johannesburg Stock Exchange All Share Index Returns - An Asymmetric GARCH and News Impact Effects Approach," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 68(1), pages 26-42, January-M.
    5. Charles, Amélie & Darné, Olivier, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Energy Economics, Elsevier, vol. 67(C), pages 508-519.
    6. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    7. Vanden, Joel M., 2005. "Equilibrium analysis of volatility clustering," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 374-417, June.
    8. Bruno Solnik, 1991. "Finance Theory and Investment Management," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 127(III), pages 303-324, September.
    9. Yueh-Neng Lin & Ken Hung, 2008. "Is Volatility Priced?," Annals of Economics and Finance, Society for AEF, vol. 9(1), pages 39-75, May.
    10. Charles, Amélie & Darné, Olivier, 2014. "Large shocks in the volatility of the Dow Jones Industrial Average index: 1928–2013," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 188-199.
    11. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    12. William Schwert, G., 2002. "Stock volatility in the new millennium: how wacky is Nasdaq?," Journal of Monetary Economics, Elsevier, vol. 49(1), pages 3-26, January.
    13. Christensen, Kim & Podolski, Mark, 2005. "Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale," Technical Reports 2005,18, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    14. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    15. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    16. Jaesun Noh & Robert F. Engle & Alex Kane, 1993. "A Test of Efficiency for the S&P Index Option Market Using Variance Forecasts," NBER Working Papers 4520, National Bureau of Economic Research, Inc.
    17. Kaplanski, Guy & Levy, Haim, 2010. "Sentiment and stock prices: The case of aviation disasters," Journal of Financial Economics, Elsevier, vol. 95(2), pages 174-201, February.
    18. Gonzalez-Rivera, Gloria & Lee, Tae-Hwy & Mishra, Santosh, 2004. "Forecasting volatility: A reality check based on option pricing, utility function, value-at-risk, and predictive likelihood," International Journal of Forecasting, Elsevier, vol. 20(4), pages 629-645.
    19. Cherif Guermat & Richard D. F. Harris, 2006. "Bias in the estimation of non-linear transformations of the integrated variance of returns," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(7), pages 481-494.
    20. Anatolyev Stanislav, 2019. "Volatility filtering in estimation of kurtosis (and variance)," Dependence Modeling, De Gruyter, vol. 7(1), pages 1-23, February.
    21. Loredana Ureche-Rangau & Franck Speeg, 2011. "A simple method for variance shift detection at unknown time points," Economics Bulletin, AccessEcon, vol. 31(3), pages 2204-2218.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:17:y:2024:i:7:p:279-:d:1428174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.