IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v17y2024i3p130-d1361447.html
   My bibliography  Save this article

Empirical Distribution of the U.S. Housing Market during the Great Recession: Nonlinear Scaling Behavior after a Major Crash

Author

Listed:
  • Fotios M. Siokis

    (School of Economics and Regional Studies, University of Macedonia, Egnatia 156, 546 36 Thessaloniki, Greece)

Abstract

This study focuses on the real estate bubble burst in the US housing market during 2007–2008. We analyze the dynamics of the housing market crash and the after-crash sequence during the Great Recession. When a complex system deviates away from its typical path by the occurrence of an extreme event, its behavior is strongly characterized as nonstationary with higher volatility. With the utilization of a robust method, we present the characteristics of the aftershock period and provide useful information about the spatial distribution and the decay process of the aftershock sequence in terms of time. The returns of the housing price indices are well approximated by the empirics of a power law. Although we deal with low-frequency data, a time power-law relaxation pattern is identified. Our findings align with those in geophysics, indicating that the value of the relaxation parameter typically hovers around one and varies across different thresholds.

Suggested Citation

  • Fotios M. Siokis, 2024. "Empirical Distribution of the U.S. Housing Market during the Great Recession: Nonlinear Scaling Behavior after a Major Crash," JRFM, MDPI, vol. 17(3), pages 1-9, March.
  • Handle: RePEc:gam:jjrfmx:v:17:y:2024:i:3:p:130-:d:1361447
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/17/3/130/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/17/3/130/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stauffer, Dietrich & Sornette, Didier, 1999. "Self-organized percolation model for stock market fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 271(3), pages 496-506.
    2. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(2), pages 170-196, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    2. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    3. Bertrand M. Roehner, 2001. "To sell or not to sell? Behavior of shareholders during price collapses," Papers cond-mat/0102042, arXiv.org.
    4. Raddant, Matthias & Wagner, Friedrich, 2013. "Phase transition in the S&P stock market," Kiel Working Papers 1846, Kiel Institute for the World Economy (IfW Kiel).
    5. Siokis, Fotios M., 2012. "Stock market dynamics: Before and after stock market crashes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1315-1322.
    6. Wang, Jie & Wang, Jun, 2020. "Cross-correlation complexity and synchronization of the financial time series on Potts dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    7. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    8. Vincenzo Crescimanna & Luca Di Persio, 2016. "Herd Behavior and Financial Crashes: An Interacting Particle System Approach," Journal of Mathematics, Hindawi, vol. 2016, pages 1-7, February.
    9. Recchioni, Maria Cristina & Tedeschi, Gabriele & Berardi, Simone, 2014. "Bank's strategies during the financial crisis," FinMaP-Working Papers 25, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    10. Ponta, Linda & Trinh, Mailan & Raberto, Marco & Scalas, Enrico & Cincotti, Silvano, 2019. "Modeling non-stationarities in high-frequency financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 173-196.
    11. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008. "Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 101-136, January.
    12. Alfarano, Simone & Milakovic, Mishael, 2009. "Network structure and N-dependence in agent-based herding models," Journal of Economic Dynamics and Control, Elsevier, vol. 33(1), pages 78-92, January.
    13. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    14. Makoto Nirei & John Stachurski & Tsutomu Watanabe, 2018. "Trade Clustering and Power Laws in Financial Markets (Published in Theoretical Economics, 15:1365?1398, 2020)," CARF F-Series CARF-F-450, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    15. Makoto Nirei & Tsutomu Watanabe, 2014. "Beauty Contests and Fat Tails in Financial Markets," UTokyo Price Project Working Paper Series 024, University of Tokyo, Graduate School of Economics.
    16. Nirei, Makoto & Stachurski, John & Watanabe, Tsutomu, 2020. "Trade clustering and power laws in financial markets," Theoretical Economics, Econometric Society, vol. 15(4), November.
    17. Makoto Nirei, 2008. "Self-organized criticality in a herd behavior model of financial markets," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 3(1), pages 89-97, June.
    18. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    19. Ren, F. & Zheng, B. & Chen, P., 2010. "Modeling interactions of trading volumes in financial dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2744-2750.
    20. Adri'an Carro & Ra'ul Toral & Maxi San Miguel, 2015. "Markets, herding and response to external information," Papers 1506.03708, arXiv.org, revised Jun 2015.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:17:y:2024:i:3:p:130-:d:1361447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.