IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v12y2019i3p107-d242988.html
   My bibliography  Save this article

CVaR Regression Based on the Relation between CVaR and Mixed-Quantile Quadrangles

Author

Listed:
  • Alex Golodnikov

    (V.M. Glushkov Institute of Cybernetics, 40, pr. Akademika Glushkova, 03187 Kyiv, Ukraine)

  • Viktor Kuzmenko

    (V.M. Glushkov Institute of Cybernetics, 40, pr. Akademika Glushkova, 03187 Kyiv, Ukraine)

  • Stan Uryasev

    (Applied Mathematics & Statistics, Stony Brook University, B-148 Math Tower, Stony Brook, NY 11794, USA)

Abstract

A popular risk measure, conditional value-at-risk (CVaR), is called expected shortfall (ES) in financial applications. The research presented involved developing algorithms for the implementation of linear regression for estimating CVaR as a function of some factors. Such regression is called CVaR (superquantile) regression. The main statement of this paper is: CVaR linear regression can be reduced to minimizing the Rockafellar error function with linear programming. The theoretical basis for the analysis is established with the quadrangle theory of risk functions. We derived relationships between elements of CVaR quadrangle and mixed-quantile quadrangle for discrete distributions with equally probable atoms. The deviation in the CVaR quadrangle is an integral. We present two equivalent variants of discretization of this integral, which resulted in two sets of parameters for the mixed-quantile quadrangle. For the first set of parameters, the minimization of error from the CVaR quadrangle is equivalent to the minimization of the Rockafellar error from the mixed-quantile quadrangle. Alternatively, a two-stage procedure based on the decomposition theorem can be used for CVaR linear regression with both sets of parameters. This procedure is valid because the deviation in the mixed-quantile quadrangle (called mixed CVaR deviation) coincides with the deviation in the CVaR quadrangle for both sets of parameters. We illustrated theoretical results with a case study demonstrating the numerical efficiency of the suggested approach. The case study codes, data, and results are posted on the website. The case study was done with the Portfolio Safeguard (PSG) optimization package, which has precoded risk, deviation, and error functions for the considered quadrangles.

Suggested Citation

  • Alex Golodnikov & Viktor Kuzmenko & Stan Uryasev, 2019. "CVaR Regression Based on the Relation between CVaR and Mixed-Quantile Quadrangles," JRFM, MDPI, vol. 12(3), pages 1-22, June.
  • Handle: RePEc:gam:jjrfmx:v:12:y:2019:i:3:p:107-:d:242988
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/12/3/107/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/12/3/107/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gilbert W. Bassett Jr. & Hsiu-Lang Chen, 2001. "Portfolio style: Return-based attribution using quantile regression," Empirical Economics, Springer, vol. 26(1), pages 293-305.
    2. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    3. Tobias Adrian & Markus K. Brunnermeier, 2016. "CoVaR," American Economic Review, American Economic Association, vol. 106(7), pages 1705-1741, July.
      • Tobias Adrian & Markus K. Brunnermeier, 2008. "CoVaR," Staff Reports 348, Federal Reserve Bank of New York.
      • Tobias Adrian & Markus K. Brunnermeier, 2011. "CoVaR," NBER Working Papers 17454, National Bureau of Economic Research, Inc.
    4. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    5. Rockafellar, R.T. & Royset, J.O. & Miranda, S.I., 2014. "Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk," European Journal of Operational Research, Elsevier, vol. 234(1), pages 140-154.
    6. Johanna F. Ziegel, 2013. "Coherence and elicitability," Papers 1303.1690, arXiv.org, revised Mar 2014.
    7. R. Tyrrell Rockafellar & Stan Uryasev & Michael Zabarankin, 2008. "Risk Tuning with Generalized Linear Regression," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 712-729, August.
    8. R. Tyrrell Rockafellar & Johannes O. Royset, 2018. "Superquantile/CVaR risk measures: second-order theory," Annals of Operations Research, Springer, vol. 262(1), pages 3-28, March.
    9. Tobias Fissler & Johanna F. Ziegel, 2015. "Higher order elicitability and Osband's principle," Papers 1503.08123, arXiv.org, revised Sep 2015.
    10. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rui Ding & Stan Uryasev, 2020. "CoCDaR and mCoCDaR: New Approach for Measurement of Systemic Risk Contributions," JRFM, MDPI, vol. 13(11), pages 1-18, November.
    2. Cheng Peng & Stanislav Uryasev, 2023. "Factor Model of Mixtures," Papers 2301.13843, arXiv.org, revised Mar 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Ding & Stan Uryasev, 2020. "CoCDaR and mCoCDaR: New Approach for Measurement of Systemic Risk Contributions," JRFM, MDPI, vol. 13(11), pages 1-18, November.
    2. Bianchi, Robert J. & Bornholt, Graham & Drew, Michael E. & Howard, Michael F., 2014. "Long-term U.S. infrastructure returns and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 42(C), pages 314-325.
    3. Cheng Peng & Stanislav Uryasev, 2023. "Factor Model of Mixtures," Papers 2301.13843, arXiv.org, revised Mar 2023.
    4. So Yeon Chun & Alexander Shapiro & Stan Uryasev, 2012. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," Operations Research, INFORMS, vol. 60(4), pages 739-756, August.
    5. Labopin-Richard T. & Gamboa F. & Garivier A. & Iooss B., 2016. "Bregman superquantiles. Estimation methods and applications," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-33, March.
    6. Matmoura, Yassine & Penev, Spiridon, 2013. "Multistage optimization of option portfolio using higher order coherent risk measures," European Journal of Operational Research, Elsevier, vol. 227(1), pages 190-198.
    7. Dimitrios G. Konstantinides & Georgios C. Zachos, 2019. "Exhibiting Abnormal Returns Under a Risk Averse Strategy," Methodology and Computing in Applied Probability, Springer, vol. 21(2), pages 551-566, June.
    8. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.
    9. Kull, Andreas, 2009. "Sharing Risk – An Economic Perspective," ASTIN Bulletin, Cambridge University Press, vol. 39(2), pages 591-613, November.
    10. Gauvin, Charles & Delage, Erick & Gendreau, Michel, 2017. "Decision rule approximations for the risk averse reservoir management problem," European Journal of Operational Research, Elsevier, vol. 261(1), pages 317-336.
    11. Brian Tomlin & Yimin Wang, 2005. "On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 37-57, June.
    12. Roman, Diana & Mitra, Gautam & Zverovich, Victor, 2013. "Enhanced indexation based on second-order stochastic dominance," European Journal of Operational Research, Elsevier, vol. 228(1), pages 273-281.
    13. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    14. Dirk Tasche, 2015. "Fitting a distribution to Value-at-Risk and Expected Shortfall, with an application to covered bonds," Papers 1505.07484, arXiv.org, revised Nov 2015.
    15. Fermanian, Jean-David & Scaillet, Olivier, 2005. "Sensitivity analysis of VaR and Expected Shortfall for portfolios under netting agreements," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 927-958, April.
    16. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    17. Marcell Béli & Kata Váradi, 2017. "A possible methodology for determining the initial margin," Financial and Economic Review, Magyar Nemzeti Bank (Central Bank of Hungary), vol. 16(2), pages 119-147.
    18. Martin Herdegen & Cosimo Munari, 2023. "An elementary proof of the dual representation of Expected Shortfall," Papers 2306.14506, arXiv.org.
    19. Liu, Congzheng & Zhu, Wenqi, 2024. "Newsvendor conditional value-at-risk minimisation: A feature-based approach under adaptive data selection," European Journal of Operational Research, Elsevier, vol. 313(2), pages 548-564.
    20. Jaehyung Choi & Hyangju Kim & Young Shin Kim, 2021. "Diversified reward-risk parity in portfolio construction," Papers 2106.09055, arXiv.org, revised Sep 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:12:y:2019:i:3:p:107-:d:242988. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.