IDEAS home Printed from https://ideas.repec.org/a/gam/jijfss/v9y2021i1p11-d504810.html
   My bibliography  Save this article

A Note on Universal Bilinear Portfolios

Author

Listed:
  • Alex Garivaltis

    (Department of Economics, School of Public and Global Affairs, College of Liberal Arts and Sciences, Northern Illinois University, 514 Zulauf Hall, DeKalb, IL 60115, USA)

Abstract

This note provides a neat and enjoyable expansion and application of the magnificent Ordentlich-Cover theory of “universal portfolios”. I generalize Cover’s benchmark of the best constant-rebalanced portfolio (or 1-linear trading strategy) in hindsight by considering the best bilinear trading strategy determined in hindsight for the realized sequence of asset prices. A bilinear trading strategy is a mini two-period active strategy whose final capital growth factor is linear separately in each period’s gross return vector for the asset market. I apply Thomas Cover’s ingenious performance-weighted averaging technique to construct a universal bilinear portfolio that is guaranteed (uniformly for all possible market behavior) to compound its money at the same asymptotic rate as the best bilinear trading strategy in hindsight. Thus, the universal bilinear portfolio asymptotically dominates the original (1-linear) universal portfolio in the same technical sense that Cover’s universal portfolios asymptotically dominate all constant-rebalanced portfolios and all buy-and-hold strategies. In fact, like so many Russian dolls, one can get carried away and use these ideas to construct an endless hierarchy of ever more dominant H -linear universal portfolios.

Suggested Citation

  • Alex Garivaltis, 2021. "A Note on Universal Bilinear Portfolios," IJFS, MDPI, vol. 9(1), pages 1-17, February.
  • Handle: RePEc:gam:jijfss:v:9:y:2021:i:1:p:11-:d:504810
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7072/9/1/11/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7072/9/1/11/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paul A. Samuelson, 2011. "Why We Should Not Make Mean Log of Wealth Big Though Years to Act Are Long," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 34, pages 491-493, World Scientific Publishing Co. Pte. Ltd..
    2. Erik Ordentlich & Thomas M. Cover, 1998. "The Cost of Achieving the Best Portfolio in Hindsight," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 960-982, November.
    3. Robert Bell & Thomas M. Cover, 1988. "Game-Theoretic Optimal Portfolios," Management Science, INFORMS, vol. 34(6), pages 724-733, June.
    4. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472, World Scientific Publishing Co. Pte. Ltd..
    5. Alex Garivaltis, 2018. "Exact Replication of the Best Rebalancing Rule in Hindsight," Papers 1810.02485, arXiv.org, revised Mar 2019.
    6. Alex Garivaltis, 2018. "Multilinear Superhedging of Lookback Options," Papers 1810.02447, arXiv.org, revised Oct 2022.
    7. Thomas M. Cover, 1991. "Universal Portfolios," Mathematical Finance, Wiley Blackwell, vol. 1(1), pages 1-29, January.
    8. Robert M. Bell & Thomas M. Cover, 1980. "Competitive Optimality of Logarithmic Investment," Mathematics of Operations Research, INFORMS, vol. 5(2), pages 161-166, May.
    9. Alex Garivaltis, 2019. "Game-Theoretic Optimal Portfolios in Continuous Time," Papers 1906.02216, arXiv.org, revised Oct 2022.
    10. Alex Garivaltis, 2019. "Game-Theoretic Optimal Portfolios for Jump Diffusions," Games, MDPI, vol. 10(1), pages 1-9, February.
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alex Garivaltis, 2019. "A Note on Universal Bilinear Portfolios," Papers 1907.09704, arXiv.org, revised Oct 2022.
    2. Alex Garivaltis, 2019. "Nash Bargaining Over Margin Loans to Kelly Gamblers," Risks, MDPI, vol. 7(3), pages 1-14, August.
    3. Alex Garivaltis, 2018. "Super-Replication of the Best Pairs Trade in Hindsight," Papers 1810.02444, arXiv.org, revised Oct 2022.
    4. Sonntag, Dominik, 2018. "Die Theorie der fairen geometrischen Rendite [The Theory of Fair Geometric Returns]," MPRA Paper 87082, University Library of Munich, Germany.
    5. Alex Garivaltis, 2019. "Cover's Rebalancing Option With Discrete Hindsight Optimization," Papers 1903.00829, arXiv.org, revised Oct 2022.
    6. Alex Garivaltis, 2022. "Rational pricing of leveraged ETF expense ratios," Annals of Finance, Springer, vol. 18(3), pages 393-418, September.
    7. Robert C. Merton, 2006. "Paul Samuelson and Financial Economics," The American Economist, Sage Publications, vol. 50(2), pages 9-31, October.
    8. Pablo Castañeda & Heinz Rudolph, 2010. "Portfolio Choice, Minimum Return Guarantees, and Competition in DC Pension Systems," Working Papers 39, Superintendencia de Pensiones, revised Feb 2010.
    9. Alex Garivaltis, 2018. "Exact Replication of the Best Rebalancing Rule in Hindsight," Papers 1810.02485, arXiv.org, revised Mar 2019.
    10. Trindade, Marco A.S. & Floquet, Sergio & Filho, Lourival M. Silva, 2020. "Portfolio theory, information theory and Tsallis statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    11. DeMarzo, Peter M. & Kremer, Ilan & Mansour, Yishay, 2016. "Robust option pricing: Hannan and Blackwell meet Black and Scholes," Journal of Economic Theory, Elsevier, vol. 163(C), pages 410-434.
    12. J. D. M. Yamim & C. C. H. Borges & R. F. Neto, 2023. "Portfolio Optimization Via Online Gradient Descent and Risk Control," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 361-381, June.
    13. Fabio Stella & Alfonso Ventura, 2011. "Defensive online portfolio selection," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 2(1/2), pages 88-105.
    14. Stanislav Shalunov & Alexei Kitaev & Yakov Shalunov & Arseniy Akopyan, 2020. "Calculated Boldness: Optimizing Financial Decisions with Illiquid Assets," Papers 2012.13830, arXiv.org.
    15. Jarrod Wilcox, 2020. "Better portfolios with higher moments," Journal of Asset Management, Palgrave Macmillan, vol. 21(7), pages 569-580, December.
    16. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    17. Yong Zhang & Xingyu Yang, 2017. "Online Portfolio Selection Strategy Based on Combining Experts’ Advice," Computational Economics, Springer;Society for Computational Economics, vol. 50(1), pages 141-159, June.
    18. Jimmy E. Hilliard & Jitka Hilliard, 2018. "Rebalancing versus buy and hold: theory, simulation and empirical analysis," Review of Quantitative Finance and Accounting, Springer, vol. 50(1), pages 1-32, January.
    19. Timothy C. Johnson, 2013. "Reciprocity as the foundation of Financial Economics," Papers 1310.2798, arXiv.org.
    20. Sagara Dewasurendra & Pedro Judice & Qiji Zhu, 2019. "The Optimum Leverage Level of the Banking Sector," Risks, MDPI, vol. 7(2), pages 1-30, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijfss:v:9:y:2021:i:1:p:11-:d:504810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.