IDEAS home Printed from https://ideas.repec.org/a/gam/jijfss/v3y2015i2p136-150d49148.html
   My bibliography  Save this article

Convergence Studies on Monte Carlo Methods for Pricing Mortgage-Backed Securities

Author

Listed:
  • Tao Pang

    (Department of Mathematics, North Carolina State University, Raleigh, NC 27695-8205, USA)

  • Yipeng Yang

    (Department of Mathematics, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX 77058, USA)

  • Dai Zhao

    (ZM Financial Systems, 5915 Farrington Road, Unit 201, Chapel Hill, NC 27517, USA)

Abstract

Monte Carlo methods are widely-used simulation tools for market practitioners from trading to risk management. When pricing complex instruments, like mortgage-backed securities (MBS), strong path-dependency and high dimensionality make the Monte Carlo method the most suitable, if not the only, numerical method. In practice, while simulation processes in option-adjusted valuation can be relatively easy to implement, it is a well-known challenge that the convergence and the desired accuracy can only be achieved at the cost of lengthy computational times. In this paper, we study the convergence of Monte Carlo methods in calculating the option-adjusted spread (OAS), effective duration (DUR) and effective convexity (CNVX) of MBS instruments. We further define two new concepts, absolute convergence and relative convergence, and show that while the convergence of OAS requires thousands of simulation paths (absolute convergence), only hundreds of paths may be needed to obtain the desired accuracy for effective duration and effective convexity (relative convergence). These results suggest that practitioners can reduce the computational time substantially without sacrificing simulation accuracy.

Suggested Citation

  • Tao Pang & Yipeng Yang & Dai Zhao, 2015. "Convergence Studies on Monte Carlo Methods for Pricing Mortgage-Backed Securities," IJFS, MDPI, vol. 3(2), pages 1-15, May.
  • Handle: RePEc:gam:jijfss:v:3:y:2015:i:2:p:136-150:d:49148
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7072/3/2/136/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7072/3/2/136/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chi-Yu Chian & Yi-Qing Zhao & Tsung-Yueh Lin & Bryan Nelson & Hsin-Haou Huang, 2018. "Comparative Study of Time-Domain Fatigue Assessments for an Offshore Wind Turbine Jacket Substructure by Using Conventional Grid-Based and Monte Carlo Sampling Methods," Energies, MDPI, vol. 11(11), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijfss:v:3:y:2015:i:2:p:136-150:d:49148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.