IDEAS home Printed from https://ideas.repec.org/a/gam/jijfss/v12y2024i2p53-d1405738.html
   My bibliography  Save this article

Comparative Analysis of Spillover Effects in the Global Stock Market under Normal and Extreme Market Conditions

Author

Listed:
  • Qiang Liu

    (School of Business, Jiangsu Ocean University, Lianyungang 222000, China)

  • Chen Xu

    (Department of Accounting, Economics and Finance, St. Edward’s University, Austin, TX 78704, USA)

  • Jane Xie

    (Department of Accounting, Economics and Finance, St. Edward’s University, Austin, TX 78704, USA)

Abstract

Using the volatility spillover index method based on the quantile vector autoregression (QVAR) model, this paper systematically examines structural changes and corresponding spillover effects within 20 major stock markets under both extreme and normal market conditions, using data spanning from January 2005 to January 2023. The results show that, compared to the traditional volatility spillover index method, which focuses mainly on average spillover effects, the QVAR model-based spillover index better captures spillover effects under extreme and various market conditions among global stock markets. The connections between stock markets are closer in extreme market conditions. The total spillover index of major global stock markets significantly increases in extreme conditions compared to normal conditions. In extreme market conditions, inflow indices show varying degrees of increase, with emerging economy stock markets displaying more significant increases. The outflow indices exhibit heterogeneity; emerging economies show consistent increases, while developed economies show mixed changes.

Suggested Citation

  • Qiang Liu & Chen Xu & Jane Xie, 2024. "Comparative Analysis of Spillover Effects in the Global Stock Market under Normal and Extreme Market Conditions," IJFS, MDPI, vol. 12(2), pages 1-20, May.
  • Handle: RePEc:gam:jijfss:v:12:y:2024:i:2:p:53-:d:1405738
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7072/12/2/53/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7072/12/2/53/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    2. Bae, Kee-Hong & Andrew Karolyi, G., 1995. "Good news, band news and international spilovers of stock return volatility between Japan and the U.S," Pacific-Basin Finance Journal, Elsevier, vol. 3(1), pages 144-144, May.
    3. Miyakoshi, Tatsuyoshi, 2003. "Spillovers of stock return volatility to Asian equity markets from Japan and the US," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 13(4), pages 383-399, October.
    4. Nyakurukwa, Kingstone & Seetharam, Yudhvir, 2023. "Quantile and asymmetric return connectedness among BRICS stock markets," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
    5. Balcilar, Mehmet & Elsayed, Ahmed H. & Hammoudeh, Shawkat, 2023. "Financial connectedness and risk transmission among MENA countries: Evidence from connectedness network and clustering analysis1," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 82(C).
    6. Hamao, Yasushi & Masulis, Ronald W & Ng, Victor, 1990. "Correlations in Price Changes and Volatility across International Stock Markets," The Review of Financial Studies, Society for Financial Studies, vol. 3(2), pages 281-307.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehmet Balcilar & Rangan Gupta & Duc Khuong Nguyen & Mark E. Wohar, 2018. "Causal effects of the United States and Japan on Pacific-Rim stock markets: nonparametric quantile causality approach," Applied Economics, Taylor & Francis Journals, vol. 50(53), pages 5712-5727, November.
    2. Nishimura, Yusaku & Sun, Bianxia, 2018. "The intraday volatility spillover index approach and an application in the Brexit vote," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 55(C), pages 241-253.
    3. Muzammil Khurshid & Muhammad Azeem & Nisar Ahmad, 2023. "Volatility Spillovers From The Japanese Stock Market To Emerging Stock Markets," Bulletin of Business and Economics (BBE), Research Foundation for Humanity (RFH), vol. 12(2), pages 118-125.
    4. Kundu, Srikanta & Sarkar, Nityananda, 2016. "Return and volatility interdependences in up and down markets across developed and emerging countries," Research in International Business and Finance, Elsevier, vol. 36(C), pages 297-311.
    5. Gustavo Peralta, 2016. "The Nature of Volatility Spillovers across the International Capital Markets," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    6. Suk-Joong Kim, 2018. "The Spillover Effects of US and Japanese Public Information News in Advanced Asia-Pacific Stock Markets," World Scientific Book Chapters, in: Information Spillovers and Market Integration in International Finance Empirical Analyses, chapter 6, pages 175-201, World Scientific Publishing Co. Pte. Ltd..
    7. John Beirne & Guglielmo Maria Caporale & Marianne Schulze-Ghattas & Nicola Spagnolo, 2013. "Volatility Spillovers and Contagion from Mature to Emerging Stock Markets," Review of International Economics, Wiley Blackwell, vol. 21(5), pages 1060-1075, November.
    8. Ahmad, Wasim & Tiwari, Shiv Ratan & Wadhwani, Akshay & Khan, Mohammad Azeem & Bekiros, Stelios, 2023. "Financial networks and systemic risk vulnerabilities: A tale of Indian banks," Research in International Business and Finance, Elsevier, vol. 65(C).
    9. Yang, Xin & Wang, Xuya & Cao, Jie & Zhao, Lili & Huang, Chuangxia, 2024. "Cross-regional connectedness of financial market: Measurement and determinants," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    10. Zhang, Yulian & He, Xie & Nakajima, Tadahiro & Hamori, Shigeyuki, 2020. "Oil, Gas, or Financial Conditions-Which One Has a Stronger Link with Growth?," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    11. Gannon, Gerard, 2005. "Simultaneous volatility transmissions and spillover effects: U.S. and Hong Kong stock and futures markets," International Review of Financial Analysis, Elsevier, vol. 14(3), pages 326-336.
    12. Albrecht, Peter & Kočenda, Evžen, 2024. "Volatility connectedness on the central European forex markets," International Review of Financial Analysis, Elsevier, vol. 93(C).
    13. He, Ling T., 2001. "Time variation paths of international transmission of stock volatility -- US vs. Hong Kong and South Korea," Global Finance Journal, Elsevier, vol. 12(1), pages 79-93.
    14. Maghyereh, Aktham & Awartani, Basel & Abdoh, Hussein, 2022. "Asymmetric risk transfer in global equity markets: An extended sample that includes the COVID pandemic period," The Journal of Economic Asymmetries, Elsevier, vol. 25(C).
    15. G. Andrew Karolyi & Rene Stulz, "undated". "Why do Markets Move Together? An Investigation of U.S.-Japan Stock Return Comovements using ADRS," Research in Financial Economics 9501, Ohio State University.
    16. Francesco Audrino & Fabio Trojani, 2006. "Estimating and predicting multivariate volatility thresholds in global stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 345-369, April.
    17. Kim, Suk-Joong & Nguyen, Do Quoc Tho, 2009. "The spillover effects of target interest rate news from the U.S. Fed and the European Central Bank on the Asia-Pacific stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 415-431, July.
    18. Martin Hoesli & Kustrim Reka, 2013. "Volatility Spillovers, Comovements and Contagion in Securitized Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 47(1), pages 1-35, July.
    19. Francesco Audrino & Fabio Trojani, 2011. "A General Multivariate Threshold GARCH Model With Dynamic Conditional Correlations," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 138-149, January.
    20. Francine Gresnigt & Erik Kole & Philip Hans Franses, 2017. "Exploiting Spillovers to Forecast Crashes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(8), pages 936-955, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijfss:v:12:y:2024:i:2:p:53-:d:1405738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.