Author
Listed:
- Maricela Yip
(Division of Physics and Biophysics, Department of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria)
- Pierre Madl
(Division of Physics and Biophysics, Department of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria)
- Aaron Wiegand
(International Laboratory for Air Quality and Health Queensland University of Technology, QLD 4001, Brisbane, Australia)
- Werner Hofmann
(Division of Physics and Biophysics, Department of Molecular Biology, University of Salzburg, A-5020 Salzburg, Austria)
Abstract
The goal of this study was to measure ultrafine particle concentrations with diameters less than 1 μm emitted by diesel buses and to assess resulting human exposure levels. The study was conducted at the Woolloongabba Busway station in Brisbane, Australia in the winter months of 2002 during which temperature inversions frequently occurred. Most buses that utilize the station are fuelled by diesel, the exhaust of which contains a significant quantity of particle matter. Passengers waiting at the station are exposed to these particles emitted from the buses. During the course of this study, passenger census was conducted, based on video surveillance, yielding person-by-person waiting time data. Furthermore, a bus census revealed accurate information about the total number of diesel versus Compressed Natural Gas (CNG) powered buses. Background (outside of the bus station) and platform measurements of ultrafine particulate number size distributions were made to determine ambient aerosol concentrations. Particle number exposure concentration ranges from 10 and 40 to 60% of bus related exhaust fumes. This changes dramatically when considering the particle mass exposure concentration, where most passengers are exposed to about 50 to 80% of exhaust fumes. The obtained data can be very significant for comparison with similar work of this type because it is shown in previous studies that exhaust emissions causes cancer in laboratory animals. It was assumed that significant differences between platform and background distributions were due to bus emissions which, combined with passenger waiting times, yielded an estimate of passenger exposure to ultrafine particles from diesel buses. From an exposure point of view, the Busway station analyzed resembles a street canyon. Although the detected exhaust particle concentration at the outbound platform is found to be in the picogram range, exposure increases with the time passengers spend on the platform along with their breathing frequency.
Suggested Citation
Maricela Yip & Pierre Madl & Aaron Wiegand & Werner Hofmann, 2006.
"Exposure Assessment of Diesel Bus Emissions,"
IJERPH, MDPI, vol. 3(4), pages 1-7, December.
Handle:
RePEc:gam:jijerp:v:3:y:2006:i:4:p:309-315:d:2407
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:3:y:2006:i:4:p:309-315:d:2407. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.