Author
Listed:
- Murty S. Kambhampati
(Department of Biology, Southern University at New Orleans, New Orleans, LA 70126, USA)
- Gregorio B. Begonia
(Department of Biology, Jackson State University, Jackson, MS 39217, USA)
- Maria F. T. Begonia
(Department of Biology, Jackson State University, Jackson, MS 39217, USA)
- Yolanda Bufford
(Department of Biology, Jackson State University, Jackson, MS 39217, USA)
Abstract
Lead (Pb) is one of the most toxic metals in the environment and may cause drastic morphological and physiological deformities in Ipomoea lacunosa . The goal of this research was to evaluate some morphological and physiological responses of morning glory grown on a Pb- and chelate-amended soil. Soil samples were analyzed, at Mississippi State University Soil Laboratory, for physico-chemical parameters, such as soil texture (73% sand, 23% silt, 4.4% clay), organic matter (6.24 ± 0.60%), and pH (7.95 ± 0.03), to establish soil conditions at the beginning of the experiments. Five EDTA (ethylenediaminetetraacetic acid) concentrations (0, 0.1, 0.5, 1, 5mM) and four lead (0, 500, 1000, 2000mg/L) treatments were arranged in factorial in a Randomized Complete Block (RCB) design with five replications. Duncan’s multiple comparison range test showed that the mean difference values of stomatal density were significant between 500 and 1000mg/L Pb and between 1000 and 2000mg/L Pb. Two way ANOVA (at 1% level) indicated that interaction between Pb and EDTA had a significant effect on the stomatal density and photosynthetic rates, and at 5% level Pb had a significant effect on chlorophyll concentrations. Lowest concentrations of chlorophyll were recorded at 2000mg/L Pb and 5mM EDTA and exhibited a decreasing trend specifically in the ranges of 1000 and 2000mg/L Pb and 1.0 and 5.0mM EDTA. Duncan’s multiple comparison range test confirmed that mean differences between the control treatment vs. 2000mg/L Pb, and 500mg/L vs. 2000mg/L Pb were significantly different at p>0.05. There was a decrease in leaf net photosynthetic rate with increasing concentrations of Pb from 0 to 2000mg/L. In conclusion, I. lacunosa L. plants were grown to maturity in all treatments with no significant and/or apparent morphological disorders, which indicated that this species might be highly tolerant even at 2000mg/L Pb concentrations in the soil.
Suggested Citation
Murty S. Kambhampati & Gregorio B. Begonia & Maria F. T. Begonia & Yolanda Bufford, 2005.
"Morphological and Physiological Responses of Morning Glory ( Ipomoea lacunosa L.) Grown in a Lead- and Chelate-Amended Soil,"
IJERPH, MDPI, vol. 2(2), pages 1-5, August.
Handle:
RePEc:gam:jijerp:v:2:y:2005:i:2:p:299-303:d:2743
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:2:y:2005:i:2:p:299-303:d:2743. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.