IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i6p5127-d1097091.html
   My bibliography  Save this article

The Interactive Relationship between Street Centrality and Land Use Intensity—A Case Study of Jinan, China

Author

Listed:
  • Chengzhen Song

    (Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Qingfang Liu

    (Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Jinping Song

    (Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Ding Yang

    (Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Zhengyun Jiang

    (Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Wei Ma

    (Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Fuchang Niu

    (Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China)

  • Jinmeng Song

    (Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

It is of great significance to study the interactive relationship between urban transportation and land use for promoting the healthy and sustainable development of cities. Taking Jinan, China, as an example, this study explored the interactive relationship between street centrality (SC) and land use intensity (LUI) in the main urban area of Jinan by using the spatial three-stage least squares method. The results showed that the closeness centrality showed an obvious “core-edge” pattern, which gradually decreased from the central urban area to the edge area. Both the betweenness centrality and the straightness centrality showed a multi-center structure. The commercial land intensity (CLUI) showed the characteristics of multi-core spatial distribution, while the residential land intensity (RLUI) and public service land intensity (PLUI) showed the characteristics of spatial distribution with the coexistence of large and small cores. There was an interactive relationship between SC and LUI. The closeness centrality and straightness centrality had positive effects on LUI, and LUI had a positive effect on closeness centrality and straightness centrality. The betweenness centrality had a negative impact on LUI, and LUI also had a negative impact on betweenness centrality. Moreover, good location factors and good traffic conditions were conducive to improving the closeness and straightness centrality of the regional traffic network. Good location factors, good traffic conditions and high population density were conducive to improving regional LUI.

Suggested Citation

  • Chengzhen Song & Qingfang Liu & Jinping Song & Ding Yang & Zhengyun Jiang & Wei Ma & Fuchang Niu & Jinmeng Song, 2023. "The Interactive Relationship between Street Centrality and Land Use Intensity—A Case Study of Jinan, China," IJERPH, MDPI, vol. 20(6), pages 1-20, March.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:6:p:5127-:d:1097091
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/6/5127/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/6/5127/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Wenjia & Kockelman, Kara M., 2016. "Optimal policies in cities with congestion and agglomeration externalities: Congestion tolls, labor subsidies, and place-based strategies," Journal of Urban Economics, Elsevier, vol. 95(C), pages 64-86.
    2. Zhikang Bao & Yifu Ou & Shuangzhou Chen & Ting Wang, 2022. "Land Use Impacts on Traffic Congestion Patterns: A Tale of a Northwestern Chinese City," Land, MDPI, vol. 11(12), pages 1-17, December.
    3. Yu, Junqing & Zhou, Kaile & Yang, Shanlin, 2019. "Land use efficiency and influencing factors of urban agglomerations in China," Land Use Policy, Elsevier, vol. 88(C).
    4. Frank, Lawrence Douglas & Saelens, Brian E. & Powell, Ken E. & Chapman, James E., 2007. "Stepping towards causation: Do built environments or neighborhood and travel preferences explain physical activity, driving, and obesity?," Social Science & Medicine, Elsevier, vol. 65(9), pages 1898-1914, November.
    5. Chang, Yu Sang & Lee, Yong Joo & Choi, Sung Sup Brian, 2017. "Is there more traffic congestion in larger cities? -Scaling analysis of the 101 largest U.S. urban centers-," Transport Policy, Elsevier, vol. 59(C), pages 54-63.
    6. Wang, Fahui & Antipova, Anzhelika & Porta, Sergio, 2011. "Street centrality and land use intensity in Baton Rouge, Louisiana," Journal of Transport Geography, Elsevier, vol. 19(2), pages 285-293.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bechir Ben Daya & Jean-François Audy, 2024. "Port Access Fluidity Management during a Major Extension Project: A Simulation-Based Case Study," Sustainability, MDPI, vol. 16(7), pages 1-30, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenjia Zhang & Ming Zhang, 2018. "Incorporating land use and pricing policies for reducing car dependence: Analytical framework and empirical evidence," Urban Studies, Urban Studies Journal Limited, vol. 55(13), pages 3012-3033, October.
    2. Kan, Zihan & Liu, Dong & Yang, Xue & Lee, Jinhyung, 2024. "Measuring exposure and contribution of different types of activity travels to traffic congestion using GPS trajectory data," Journal of Transport Geography, Elsevier, vol. 117(C).
    3. Zhang, Pengyan & Yang, Dan & Qin, Mingzhou & Jing, Wenlong, 2020. "Spatial heterogeneity analysis and driving forces exploring of built-up land development intensity in Chinese prefecture-level cities and implications for future Urban Land intensive use," Land Use Policy, Elsevier, vol. 99(C).
    4. Hamdi Lemamsha & Chris Papadopoulos & Gurch Randhawa, 2018. "Perceived Environmental Factors Associated with Obesity in Libyan Men and Women," IJERPH, MDPI, vol. 15(2), pages 1-16, February.
    5. Tu Anh Trinh & Ducksu Seo & Unchong Kim & Thi Nhu Quynh Phan & Thi Hai Hang Nguyen, 2022. "Air Transport Centrality as a Driver of Sustainable Regional Growth: A Case of Vietnam," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
    6. van de Coevering, Paul & Maat, Kees & van Wee, Bert, 2018. "Residential self-selection, reverse causality and residential dissonance. A latent class transition model of interactions between the built environment, travel attitudes and travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 466-479.
    7. Scoppa, Martin & Bawazir, Khawla & Alawadi, Khaled, 2019. "Straddling boundaries in superblock cities. Assessing local and global network connectivity using cases from Abu Dhabi, UAE," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 770-782.
    8. Ahmed Ali Bindajam & Javed Mallick, 2020. "Impact of the Spatial Configuration of Streets Networks on Urban Growth: A Case Study of Abha City, Saudi Arabia," Sustainability, MDPI, vol. 12(5), pages 1-14, March.
    9. Lisha Pan & Hangang Hu & Xin Jing & Yang Chen & Guan Li & Zhongguo Xu & Yuefei Zhuo & Xueqi Wang, 2022. "The Impacts of Regional Cooperation on Urban Land-Use Efficiency: Evidence from the Yangtze River Delta, China," Land, MDPI, vol. 11(6), pages 1-16, June.
    10. Wang, Fenglong & Mao, Zidan & Wang, Donggen, 2020. "Residential relocation and travel satisfaction change: An empirical study in Beijing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 341-353.
    11. Yuval Arbel & Chaim Fialkoff & Amichai Kerner, 2020. "The Chicken and Egg Problem: Obesity and the Urban Monocentric Model," The Journal of Real Estate Finance and Economics, Springer, vol. 61(4), pages 576-606, November.
    12. Bentley, Rebecca & Jolley, Damien & Kavanagh, Anne Marie, 2010. "Local environments as determinants of walking in Melbourne, Australia," Social Science & Medicine, Elsevier, vol. 70(11), pages 1806-1815, June.
    13. Zhang, Tong & Zeng, Zhe & Jia, Tao & Li, Jing, 2016. "Examining the amenability of urban street networks for locating facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 469-479.
    14. Yedong Chen & Jiang Chang & Zixuan Li & Li Ming & Cankun Li & Cheng Li, 2023. "Coupling Coordination and Spatiotemporal Analysis of Urban Compactness and Land-Use Efficiency in Resource-Based Areas: A Case Study of Shanxi Province, China," Land, MDPI, vol. 12(9), pages 1-23, August.
    15. repec:spo:wpmain:info:hdl:2441/7po41o0s2r8a280jp65ahvu46k is not listed on IDEAS
    16. Thomas Schofield & Melissa Merrick & Chia-Feng Chen, 2016. "Reciprocal Associations between Neighborhood Context and Parent Investments: Selection Effects in Two Longitudinal Samples," Working Papers wp16-08-ff, Princeton University, School of Public and International Affairs, Center for Research on Child Wellbeing..
    17. Ettema, Dick & Nieuwenhuis, Roy, 2017. "Residential self-selection and travel behaviour: What are the effects of attitudes, reasons for location choice and the built environment?," Journal of Transport Geography, Elsevier, vol. 59(C), pages 146-155.
    18. Xinhai Lu & Zhenxing Shi & Jia Li & Junhao Dong & Mingjie Song & Jiao Hou, 2022. "Research on the Impact of Factor Flow on Urban Land Use Efficiency from the Perspective of Urbanization," Land, MDPI, vol. 11(3), pages 1-17, March.
    19. Gerlinde Grasser & Delfien Dyck & Sylvia Titze & Willibald Stronegger, 2013. "Objectively measured walkability and active transport and weight-related outcomes in adults: a systematic review," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 58(4), pages 615-625, August.
    20. Phani Kumar, P. & Ravi Sekhar, Ch. & Parida, Manoranjan, 2018. "Residential dissonance in TOD neighborhoods," Journal of Transport Geography, Elsevier, vol. 72(C), pages 166-177.
    21. Hao Su & Shuo Yang, 2022. "Spatio-Temporal Urban Land Green Use Efficiency under Carbon Emission Constraints in the Yellow River Basin, China," IJERPH, MDPI, vol. 19(19), pages 1-28, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:6:p:5127-:d:1097091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.