IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i5p3814-d1075543.html
   My bibliography  Save this article

An Educational Game to Teach Children about Air Quality Using Augmented Reality and Tangible Interaction with Sensors

Author

Listed:
  • João Fernandes

    (ISCTE, Instituto Universitário de Lisboa (ISCTE-IUL), Av. das Forças Armadas, 1649-026 Lisboa, Portugal)

  • Tomás Brandão

    (ISCTE, Instituto Universitário de Lisboa (ISCTE-IUL), Av. das Forças Armadas, 1649-026 Lisboa, Portugal
    ISTAR—Information Sciences and Technologies and Architecture Research Center, Av. das Forças Armadas, 1649-026 Lisboa, Portugal)

  • Susana Marta Almeida

    (Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela, Portugal)

  • Pedro Santana

    (ISCTE, Instituto Universitário de Lisboa (ISCTE-IUL), Av. das Forças Armadas, 1649-026 Lisboa, Portugal
    ISTAR—Information Sciences and Technologies and Architecture Research Center, Av. das Forças Armadas, 1649-026 Lisboa, Portugal)

Abstract

Air pollution is known to be one of the main causes of injuries to the respiratory system and even premature death. Gases, particles, and biological compounds affect not only the air we breathe outdoors, but also indoors. Children are highly affected by the poor quality of the air they breathe because their organs and immune systems are still in the developmental stages. To contribute to raising children’s awareness to these concerns, this article presents the design, implementation, and experimental validation of an serious augmented reality game for children to playfully learn about air quality by interacting with physical sensor nodes. The game presents visual representations of the pollutants measured by the sensor node, rendering tangible the invisible. Causal knowledge is elicited by stimulating the children to expose real-life objects (e.g., candles) to the sensor node. The playful experience is amplified by letting children play in pairs. The game was evaluated using the Wizard of Oz method in a sample of 27 children aged between 7 and 11 years. The results show that the proposed game, in addition to improving children’s knowledge about indoor air pollution, is also perceived by them as easy to use and a useful learning tool that they would like to continue using, even in other educational contexts.

Suggested Citation

  • João Fernandes & Tomás Brandão & Susana Marta Almeida & Pedro Santana, 2023. "An Educational Game to Teach Children about Air Quality Using Augmented Reality and Tangible Interaction with Sensors," IJERPH, MDPI, vol. 20(5), pages 1-24, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:5:p:3814-:d:1075543
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/5/3814/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/5/3814/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhenhua Zhang & Jingxue Zhang & Yanchao Feng, 2021. "Assessment of the Carbon Emission Reduction Effect of the Air Pollution Prevention and Control Action Plan in China," IJERPH, MDPI, vol. 18(24), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Hao & Xu, Jingxuan & Wang, Jie & Hou, Xiang, 2023. "Reduce production or increase efficiency? Hazardous air pollutants regulation, energy use, and the synergistic effect on industrial enterprises' carbon emission," Energy Economics, Elsevier, vol. 126(C).
    2. Jie Gao & Wu Zhang & Chunbaixue Yang & Qun Wang & Rui Yuan & Rui Wang & Limiao Zhang & Zhijian Li & Xiaoli Luo, 2023. "A Comparative Study of China’s Carbon Neutrality Policy and International Research Keywords under the Background of Decarbonization Plans in China," Sustainability, MDPI, vol. 15(17), pages 1-23, August.
    3. Xiaoyi Wen & Shangjiu Wang & Shaoyong Li & Liang Cheng & Keqiang Li & Qing Zheng & Baoreng Zhang, 2024. "Impact Factors of Industrial Pollution and Carbon Reduction under the “Dual Carbon” Target: A Case Study of Urban Aggregation in the Pearl River Delta and Yangtze River Delta," Sustainability, MDPI, vol. 16(5), pages 1-16, February.
    4. Luo, Haizhi & Li, Yingyue & Gao, Xinyu & Meng, Xiangzhao & Yang, Xiaohu & Yan, Jinyue, 2023. "Carbon emission prediction model of prefecture-level administrative region: A land-use-based case study of Xi'an city, China," Applied Energy, Elsevier, vol. 348(C).
    5. Ke Zhang & Jing Qian & Zhenhua Zhang & Shijiao Fang, 2023. "The Impact of Carbon Trading Pilot Policy on Carbon Neutrality: Empirical Evidence from Chinese Cities," IJERPH, MDPI, vol. 20(5), pages 1-23, March.
    6. Shiming Liao & Dong Wang & Ting Ren & Xuemin Liu, 2022. "Heterogeneity and Decomposition Analysis of Manufacturing Carbon Dioxide Emissions in China’s Post-Industrial Innovative Megacity Shenzhen," IJERPH, MDPI, vol. 19(23), pages 1-19, November.
    7. Ruifang Liu & Lixia Pang & Yidian Yang & Yuxing Gao & Bei Gao & Feng Liu & Li Wang, 2023. "Air Quality—Meteorology Correlation Modeling Using Random Forest and Neural Network," Sustainability, MDPI, vol. 15(5), pages 1-22, March.
    8. Shuo Feng & Ke Chen, 2022. "Impact of Environmental Information Disclosure Policy and Trade on Chinese Paper Industry Environmental Effects," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    9. Getao Hu & Jun Yang & Jun Li, 2022. "The Dynamic Evolution of Global Energy Security and Geopolitical Games: 1995~2019," IJERPH, MDPI, vol. 19(21), pages 1-25, November.
    10. Qian Zhang & Qizhen Wang, 2023. "Digitalization, Electricity Consumption and Carbon Emissions—Evidence from Manufacturing Industries in China," IJERPH, MDPI, vol. 20(5), pages 1-21, February.
    11. Dongling Wang & Yuming Zhang & Xiaoyi Zhang, 2022. "Impact of Environmental Regulation on Regional Innovative Ability: From the Perspective of Local Government Competition," IJERPH, MDPI, vol. 20(1), pages 1-16, December.
    12. Rui Cao & Yanling Xiao & Fengxue Yin, 2023. "Spatio-Temporal Evolution of High-Quality Development and the Impact of Carbon Emissions Trading Schemes," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    13. Haotian Zhang & Xiumei Sun & Xueyang Wang & Su Yan, 2022. "Winning the Blue Sky Defense War: Assessing Air Pollution Prevention and Control Action Based on Synthetic Control Method," IJERPH, MDPI, vol. 19(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:5:p:3814-:d:1075543. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.