IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i4p2851-d1059232.html
   My bibliography  Save this article

The Application of Hyperspectral Imaging to the Measurement of Pressure Injury Area

Author

Listed:
  • Lin-Lin Lee

    (Department of Nursing, Hungkuang University, Taichung 433304, Taiwan)

  • Shu-Ling Chen

    (Department of Nursing, Hungkuang University, Taichung 433304, Taiwan)

Abstract

Wound size measurement is an important indicator of wound healing. Nurses measure wound size in terms of length × width in wound healing assessment, but it is easy to overestimate the extent of the wound due to irregularities around it. Using hyperspectral imaging (HIS) to measure the area of a pressure injury could provide more accurate data than manual measurement, ensure that the same tool is used for standardized assessment of wounds, and reduce the measurement time. This study was a pilot cross-sectional study, and a total of 30 patients with coccyx sacral pressure injuries were recruited to the rehabilitation ward after approval by the human subjects research committee. We used hyperspectral images to collect pressure injury images and machine learning (k-means) to automatically classify wound areas in combination with the length × width rule (LW rule) and image morphology algorithm for wound judgment and area calculation. The results calculated from the data were compared with the calculations made by the nursing staff using the length × width rule. The use of hyperspectral images, machine learning, the length × width rule (LW rule), and an image morphology algorithm to calculate the wound area yielded more accurate measurements than did nurses, effectively reduced the chance of human error, reduced the measurement time, and produced real-time data. HIS can be used by nursing staff to assess wounds with a standardized approach so as to ensure that proper wound care can be provided.

Suggested Citation

  • Lin-Lin Lee & Shu-Ling Chen, 2023. "The Application of Hyperspectral Imaging to the Measurement of Pressure Injury Area," IJERPH, MDPI, vol. 20(4), pages 1-11, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:2851-:d:1059232
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/4/2851/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/4/2851/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:2851-:d:1059232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.