IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i2p1150-d1029443.html
   My bibliography  Save this article

A Critical Review on Artificial Intelligence—Based Microplastics Imaging Technology: Recent Advances, Hot-Spots and Challenges

Author

Listed:
  • Yan Zhang

    (School of Materials and Environmental Engineering, Fujian Polytechnic Normal University, Fuzhou 350300, China)

  • Dan Zhang

    (School of Big Data and Artificial Intelligence, Fujian Polytechnic Normal University, Fuzhou 350300, China
    Fujian Provincial Key Laboratory of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuzhou 350300, China)

  • Zhenchang Zhang

    (College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China)

Abstract

Due to the rapid artificial intelligence technology progress and innovation in various fields, this research aims to use science mapping tools to comprehensively and objectively analyze recent advances, hot-spots, and challenges in artificial intelligence-based microplastic-imaging field from the Web of Science (2019–2022). By text mining and visualization in the scientific literature we emphasized some opportunities to bring forward further explication and analysis by (i) exploring efficient and low-cost automatic quantification methods in the appearance properties of microplastics, such as shape, size, volume, and topology, (ii) investigating microplastics water-soluble synthetic polymers and interaction with other soil and water ecology environments via artificial intelligence technologies, (iii) advancing efficient artificial intelligence algorithms and models, even including intelligent robot technology, (iv) seeking to create and share robust data sets, such as spectral libraries and toxicity database and co-operation mechanism, (v) optimizing the existing deep learning models based on the readily available data set to balance the related algorithm performance and interpretability, (vi) facilitating Unmanned Aerial Vehicle technology coupled with artificial intelligence technologies and data sets in the mass quantities of microplastics. Our major findings were that the research of artificial intelligence methods to revolutionize environmental science was progressing toward multiple cross-cutting areas, dramatically increasing aspects of the ecology of plastisphere, microplastics toxicity, rapid identification, and volume assessment of microplastics. The above findings can not only determine the characteristics and track of scientific development, but also help to find suitable research opportunities to carry out more in-depth research with many problems remaining.

Suggested Citation

  • Yan Zhang & Dan Zhang & Zhenchang Zhang, 2023. "A Critical Review on Artificial Intelligence—Based Microplastics Imaging Technology: Recent Advances, Hot-Spots and Challenges," IJERPH, MDPI, vol. 20(2), pages 1-30, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:2:p:1150-:d:1029443
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/2/1150/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/2/1150/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    2. M.J. Cobo & A.G. López-Herrera & E. Herrera-Viedma & F. Herrera, 2011. "Science mapping software tools: Review, analysis, and cooperative study among tools," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 62(7), pages 1382-1402, July.
    3. Nees Jan Eck & Ludo Waltman, 2010. "Software survey: VOSviewer, a computer program for bibliometric mapping," Scientometrics, Springer;Akadémiai Kiadó, vol. 84(2), pages 523-538, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaviria-Marin, Magaly & Merigó, José M. & Baier-Fuentes, Hugo, 2019. "Knowledge management: A global examination based on bibliometric analysis," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 194-220.
    2. Zhigao Liu & Yimei Yin & Weidong Liu & Michael Dunford, 2015. "Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 103(1), pages 135-158, April.
    3. Pan, Xuelian & Yan, Erjia & Cui, Ming & Hua, Weina, 2018. "Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools," Journal of Informetrics, Elsevier, vol. 12(2), pages 481-493.
    4. Rongrong Li & Feng Ren & Qiang Wang, 2024. "China–US scientific collaboration on sustainable development amidst geopolitical tensions," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-19, December.
    5. Osman Issah & Lúcia Lima Rodrigues, 2021. "Corporate Social Responsibility and Corporate Tax Aggressiveness: A Scientometric Analysis of the Existing Literature to Map the Future," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    6. Yuen-Hsien Tseng & Ming-Yueh Tsay, 2013. "Journal clustering of library and information science for subfield delineation using the bibliometric analysis toolkit: CATAR," Scientometrics, Springer;Akadémiai Kiadó, vol. 95(2), pages 503-528, May.
    7. Li Yan & Wang Zhiping, 2023. "Mapping the Literature on Academic Publishing: A Bibliometric Analysis on WOS," SAGE Open, , vol. 13(1), pages 21582440231, March.
    8. Ying Lu & Walter Timo de Vries, 2021. "A Bibliometric and Visual Analysis of Rural Development Research," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    9. Keng Yang & Hanying Qi, 2022. "Research on Health Disparities Related to the COVID-19 Pandemic: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(3), pages 1-25, January.
    10. Hugo Baier-Fuentes & José M. Merigó & José Ernesto Amorós & Magaly Gaviria-Marín, 2019. "International entrepreneurship: a bibliometric overview," International Entrepreneurship and Management Journal, Springer, vol. 15(2), pages 385-429, June.
    11. Shashi & Piera Centobelli & Roberto Cerchione & Amit Mittal, 2021. "Managing sustainability in luxury industry to pursue circular economy strategies," Business Strategy and the Environment, Wiley Blackwell, vol. 30(1), pages 432-462, January.
    12. Chaomei Chen & Zhigang Hu & Jared Milbank & Timothy Schultz, 2013. "A visual analytic study of retracted articles in scientific literature," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 64(2), pages 234-253, February.
    13. Feng Hu & Wei Liu & Sang-Bing Tsai & Junbin Gao & Ning Bin & Quan Chen, 2018. "An Empirical Study on Visualizing the Intellectual Structure and Hotspots of Big Data Research from a Sustainable Perspective," Sustainability, MDPI, vol. 10(3), pages 1-19, March.
    14. Li Zhao & Zhi-ying Tang & Xin Zou, 2019. "Mapping the Knowledge Domain of Smart-City Research: A Bibliometric and Scientometric Analysis," Sustainability, MDPI, vol. 11(23), pages 1-28, November.
    15. Juan Ruiz-Rosero & Gustavo Ramirez-Gonzalez & Jesus Viveros-Delgado, 2019. "Software survey: ScientoPy, a scientometric tool for topics trend analysis in scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 1165-1188, November.
    16. Huchang Liao & Ming Tang & Li Luo & Chunyang Li & Francisco Chiclana & Xiao-Jun Zeng, 2018. "A Bibliometric Analysis and Visualization of Medical Big Data Research," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    17. Hua Zheng & Min Guo & Qian Wang & Qinghai Zhang & Noriko Akita, 2023. "A Bibliometric Analysis of Current Knowledge Structure and Research Progress Related to Urban Community Garden Systems," Land, MDPI, vol. 12(1), pages 1-34, January.
    18. Juan Pablo Bascur & Suzan Verberne & Nees Jan Eck & Ludo Waltman, 2023. "Academic information retrieval using citation clusters: in-depth evaluation based on systematic reviews," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(5), pages 2895-2921, May.
    19. Ibrahim Hassan Mohamud & Zakarie Abdi Warsame, 2024. "A Bibliometric Review to Understanding the Supply Chain of Renewable Energy," International Journal of Energy Economics and Policy, Econjournals, vol. 14(5), pages 418-424, September.
    20. Ileana Blanco & Luigi De Bellis & Andrea Luvisi, 2022. "Bibliometric Mapping of Research on Life Cycle Assessment of Olive Oil Supply Chain," Sustainability, MDPI, vol. 14(7), pages 1-25, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:2:p:1150-:d:1029443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.