IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i19p6879-d1252883.html
   My bibliography  Save this article

Nutritional Considerations for Bladder Storage Conditions in Adult Females

Author

Listed:
  • Barbara Gordon

    (Department of Nutrition and Dietetics, Idaho State University, Meridian, ID 83642, USA)

Abstract

Background: Clinical guidelines developed by urologic, urogynecologic, and gynecologic associations around the globe include recommendations on nutrition-related lifestyle and behavioral change for bladder storage conditions. This study identified and compared clinical guidelines on three urological conditions (interstitial cystitis/bladder pain syndrome (IC/BPS), overactive bladder, and stress urinary incontinence) affecting adult women. Methods: A three-step process was employed to identify the guidelines. Next, a quality assessment of the guidelines was conducted employing the Appraisal of Guidelines Research and Evaluation (AGREE II) International tool. (3) Results: Twenty-two clinical guidelines, prepared by seventeen groups spanning four continents, met the inclusion criteria. The AGREE II analyses revealed that most of the guideline development processes complied with best practices. The most extensive nutrition recommendations were for women with IC/BPS. Dietary manipulation for the other two storage LUTS primarily focused on the restriction or limitation of specific beverages and/or optimal fluid intake. (4) Conclusion: Clinical guidelines for IC/BPS, overactive bladder, and stress urinary incontinence include nutrition recommendations; however, the extent of dietary manipulation varied by condition. The need to ensure that clinicians are informing patients of the limitations of the evidence supporting those recommendations emerged. Furthermore, given the need to treat nutrition-related comorbid conditions as a strategy to help mitigate these three urological disorders, the value of referral to a dietitian for medical nutrition therapy is apparent.

Suggested Citation

  • Barbara Gordon, 2023. "Nutritional Considerations for Bladder Storage Conditions in Adult Females," IJERPH, MDPI, vol. 20(19), pages 1-15, October.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:19:p:6879-:d:1252883
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/19/6879/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/19/6879/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sven-Eric Jordt & Diana M. Bautista & Huai-hu Chuang & David D. McKemy & Peter M. Zygmunt & Edward D. Högestätt & Ian D. Meng & David Julius, 2004. "Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1," Nature, Nature, vol. 427(6971), pages 260-265, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael A Ha & Gregory J Smith & Joseph A Cichocki & Lu Fan & Yi-Shiuan Liu & Ana I Caceres & Sven Eric Jordt & John B Morris, 2015. "Menthol Attenuates Respiratory Irritation and Elevates Blood Cotinine in Cigarette Smoke Exposed Mice," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-16, February.
    2. A. Catalina Vélez-Ortega & Ruben Stepanyan & Stephanie E. Edelmann & Sara Torres-Gallego & Channy Park & Desislava A. Marinkova & Joshua S. Nowacki & Ghanshyam P. Sinha & Gregory I. Frolenkov, 2023. "TRPA1 activation in non-sensory supporting cells contributes to regulation of cochlear sensitivity after acoustic trauma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Liying Zhang & Charlotte Simonsen & Lucie Zimova & Kaituo Wang & Lavanya Moparthi & Rachelle Gaudet & Maria Ekoff & Gunnar Nilsson & Ute A. Hellmich & Viktorie Vlachova & Pontus Gourdon & Peter M. Zyg, 2022. "Cannabinoid non-cannabidiol site modulation of TRPV2 structure and function," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    4. Xiaoning Wang & Yangyang Sun & Qian Wang & Fengying Liu & Weijie Yang & Xin Sui & Jun Yang & Minmin Zhang & Shuai Wang & Zhenyu Xiao & Yuan Luo & Yongan Wang & Tong Zhu, 2022. "Potential Common Mechanisms of Cytotoxicity Induced by Amide Herbicides via TRPA1 Channel Activation," IJERPH, MDPI, vol. 19(13), pages 1-18, June.
    5. Avnika Bali & Samantha P. Schaefer & Isabelle Trier & Alice L. Zhang & Lilian Kabeche & Candice E. Paulsen, 2023. "Molecular mechanism of hyperactivation conferred by a truncation of TRPA1," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:19:p:6879-:d:1252883. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.