IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i9p5367-d804404.html
   My bibliography  Save this article

Artificial Intelligence-Driven Intrusion Detection in Software-Defined Wireless Sensor Networks: Towards Secure IoT-Enabled Healthcare Systems

Author

Listed:
  • Shimbi Masengo Wa Umba

    (Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002, South Africa)

  • Adnan M. Abu-Mahfouz

    (Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002, South Africa
    Council for Scientific and Industrial Research (CSIR), Pretoria 0184, South Africa)

  • Daniel Ramotsoela

    (Department of Electrical, Electronic and Computer Engineering, University of Pretoria, Pretoria 0002, South Africa)

Abstract

Wireless Sensor Networks (WSNs) are increasingly deployed in Internet of Things (IoT) systems for applications such as smart transportation, telemedicine, smart health monitoring and fall detection systems for the elderly people. Given that huge amount of data, vital and critical information can be exchanged between the different parts of a WSN, good management and protection schemes are needed to ensure an efficient and secure operation of the WSN. To ensure an efficient management of WSNs, the Software-Defined Wireless Sensor Network (SDWSN) paradigm has been recently introduced in the literature. In the same vein, Intrusion Detection Systems, have been used in the literature to safeguard the security of SDWSN-based IoTs. In this paper, three popular Artificial Intelligence techniques (Decision Tree, Naïve Bayes, and Deep Artificial Neural Network) are trained to be deployed as anomaly detectors in IDSs. It is shown that an IDS using the Decision Tree-based anomaly detector yields the best performances metrics both in the binary classification and in the multinomial classification. Additionally, it was found that an IDS using the Naïve Bayes-based anomaly detector was only adapted for binary classification of intrusions in low memory capacity SDWSN-based IoT (e.g., wearable fitness tracker). Moreover, new state-of-the-art accuracy (binary classification) and F-scores (multinomial classification) were achieved by introducing an end-to-end feature engineering scheme aimed at obtaining 118 features from the 41 features of the Network Security Laboratory-Knowledge Discovery in Databases (NSL-KDD) dataset. The state-of-the-art accuracy was pushed to 0.999777 using the Decision Tree-based anomaly detector. Finally, it was found that the Deep Artificial Neural Network should be expected to become the next default anomaly detector in the light of its current performance metrics and the increasing abundance of training data.

Suggested Citation

  • Shimbi Masengo Wa Umba & Adnan M. Abu-Mahfouz & Daniel Ramotsoela, 2022. "Artificial Intelligence-Driven Intrusion Detection in Software-Defined Wireless Sensor Networks: Towards Secure IoT-Enabled Healthcare Systems," IJERPH, MDPI, vol. 19(9), pages 1-21, April.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:9:p:5367-:d:804404
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/9/5367/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/9/5367/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Liu & Shuang Lai & Ayesha Akram Rai & Abual Hassan & Ray Tahir Mushtaq, 2023. "Exploring the Potential of Big Data Analytics in Urban Epidemiology Control: A Comprehensive Study Using CiteSpace," IJERPH, MDPI, vol. 20(5), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:9:p:5367-:d:804404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.