Author
Listed:
- Fangyi Wang
(Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China)
- Yongchao Wang
(Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China)
- Xiaokang Ji
(Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China)
- Zhiping Wang
(Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China)
Abstract
(1) Background: Macrosomia is prevalent in China and worldwide. The current method of predicting macrosomia is ultrasonography. We aimed to develop new predictive models for recognizing macrosomia using a random forest model to improve the sensitivity and specificity of macrosomia prediction; (2) Methods: Based on the Shandong Multi-Center Healthcare Big Data Platform, we collected the prenatal examination and delivery data from June 2017 to May 2018 in Jinan, including the macrosomia and normal-weight newborns. We constructed a random forest model and a logistic regression model for predicting macrosomia. We compared the validity and predictive value of these two methods and the traditional method; (3) Results: 405 macrosomia cases and 3855 normal-weight newborns fit the selection criteria and 405 pairs of macrosomia and control cases were brought into the random forest model and logistic regression model. On the basis of the average decrease of the Gini coefficient, the order of influencing factors was: interspinal diameter, transverse outlet, intercristal diameter, sacral external diameter, pre-pregnancy body mass index, age, the number of pregnancies, and the parity. The sensitivity, specificity, and area under curve were 91.7%, 91.7%, and 95.3% for the random forest model, and 56.2%, 82.6%, and 72.0% for logistic regression model, respectively; the sensitivity and specificity were 29.6% and 97.5% for the ultrasound; (4) Conclusions: A random forest model based on the maternal information can be used to predict macrosomia accurately during pregnancy, which provides a scientific basis for developing rapid screening and diagnosis tools for macrosomia.
Suggested Citation
Fangyi Wang & Yongchao Wang & Xiaokang Ji & Zhiping Wang, 2022.
"Effective Macrosomia Prediction Using Random Forest Algorithm,"
IJERPH, MDPI, vol. 19(6), pages 1-10, March.
Handle:
RePEc:gam:jijerp:v:19:y:2022:i:6:p:3245-:d:767841
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:6:p:3245-:d:767841. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.