IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i5p2809-d760608.html
   My bibliography  Save this article

Comparative Diagnosis of the Urban Noise Problem from Infrastructural and Social Sensing Approaches: A Case Study in Ningbo, China

Author

Listed:
  • Yutian Si

    (College of Architecture and Landscape Architecture, Peking University, Haidian, Beijing 100871, China
    Sichuan Territorial Planning Institute, Chengdu 610081, China)

  • Liyan Xu

    (College of Architecture and Landscape Architecture, Peking University, Haidian, Beijing 100871, China)

  • Xiao Peng

    (College of Architecture and Landscape Architecture, Peking University, Haidian, Beijing 100871, China)

  • Aihan Liu

    (College of Architecture and Landscape Architecture, Peking University, Haidian, Beijing 100871, China
    Department of Data Science, The George Washington University, Washington, DC 20052, USA)

Abstract

Urban noise causes a variety of health problems, and its prevention and control have thus become an important research topic in urban governance. Although existing literature is fairly comprehensive in revealing the physical noise patterns, it lacks the concern of people’s perceived seriousness, especially at the macroscopic, i.e., citywide scale. In this paper, we borrow from the “exposure-perception-behavior” theory in environmental psychology, and propose an analytical framework for diagnosing the urban noise problem that integrates the Infrastructural and Social Sensing perspectives. Utilizing noise monitoring data that fills the spatiotemporal granularity gaps of official noise monitoring, as well as the “12345” urban complaint hotline records which serve as a proxy for residents’ perceived noise levels, we empirically examine the mechanisms for physical magnitude and perceived seriousness of urban noise, respectively, by taking the Jiangbei District of Ningbo City, China as an example. Results show that the existence of perceptual bias and behavioral preference effects did shape people’s perceived noise problem map that is vastly different from that of the physical noise magnitude, in which the semantics of urban places, temporal rhythms of life, and population demographics significantly influenced people’s tolerance of noise. We conclude the paper with suggestions on updating the existing National Standard for urban noise regulation to reflect the perceptual aspect, and also methodological discussions on possible ways to recognize and utilize the perceptual bias in social-sensing big-data to better accommodate urban governance.

Suggested Citation

  • Yutian Si & Liyan Xu & Xiao Peng & Aihan Liu, 2022. "Comparative Diagnosis of the Urban Noise Problem from Infrastructural and Social Sensing Approaches: A Case Study in Ningbo, China," IJERPH, MDPI, vol. 19(5), pages 1-21, February.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2809-:d:760608
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/5/2809/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/5/2809/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu Liu & Xi Liu & Song Gao & Li Gong & Chaogui Kang & Ye Zhi & Guanghua Chi & Li Shi, 2015. "Social Sensing: A New Approach to Understanding Our Socioeconomic Environments," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 105(3), pages 512-530, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xin & Xie, Qianqian & Jiang, Jiaojiao & Zhou, Yuan & Huang, Lucheng, 2019. "Identifying and monitoring the development trends of emerging technologies using patent analysis and Twitter data mining: The case of perovskite solar cell technology," Technological Forecasting and Social Change, Elsevier, vol. 146(C), pages 687-705.
    2. Yang, Xiping & Fang, Zhixiang & Xu, Yang & Yin, Ling & Li, Junyi & Lu, Shiwei, 2019. "Spatial heterogeneity in spatial interaction of human movements—Insights from large-scale mobile positioning data," Journal of Transport Geography, Elsevier, vol. 78(C), pages 29-40.
    3. Paulina Guerrero & Maja Steen Møller & Anton Stahl Olafsson & Bernhard Snizek, 2016. "Revealing Cultural Ecosystem Services through Instagram Images: The Potential of Social Media Volunteered Geographic Information for Urban Green Infrastructure Planning and Governance," Urban Planning, Cogitatio Press, vol. 1(2), pages 1-17.
    4. Werner Liebregts & Pourya Darnihamedani & Eric Postma & Martin Atzmueller, 2020. "The promise of social signal processing for research on decision-making in entrepreneurial contexts," Small Business Economics, Springer, vol. 55(3), pages 589-605, October.
    5. Qian Chen & Tingting Ye & Naizhuo Zhao & Mingjun Ding & Zutao Ouyang & Peng Jia & Wenze Yue & Xuchao Yang, 2021. "Mapping China’s regional economic activity by integrating points-of-interest and remote sensing data with random forest," Environment and Planning B, , vol. 48(7), pages 1876-1894, September.
    6. Amjad Ali & Marc Audi & Ismail Senturk & Yannick Roussel, 2022. "Do Sectoral Growth Promote CO2 Emissions in Pakistan? Time Series Analysis in Presence of Structural Break," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 410-425, March.
    7. Yunzi Yang & Yuanyuan Ma & Hongzan Jiao, 2021. "Exploring the Correlation between Block Vitality and Block Environment Based on Multisource Big Data: Taking Wuhan City as an Example," Land, MDPI, vol. 10(9), pages 1-23, September.
    8. Luo, Shuli & He, Sylvia Y., 2021. "Understanding gender difference in perceptions toward transit services across space and time: A social media mining approach," Transport Policy, Elsevier, vol. 111(C), pages 63-73.
    9. Ling Yin & Jie Chen & Hao Zhang & Zhile Yang & Qiao Wan & Li Ning & Jinxing Hu & Qi Yu, 2020. "Improving emergency evacuation planning with mobile phone location data," Environment and Planning B, , vol. 47(6), pages 964-980, July.
    10. Yuye Zhou & Jiangang Xu & Maosen Yin & Jun Zeng & Haolin Ming & Yiwen Wang, 2022. "Spatial-Temporal Pattern Evolution of Public Sentiment Responses to the COVID-19 Pandemic in Small Cities of China: A Case Study Based on Social Media Data Analysis," IJERPH, MDPI, vol. 19(18), pages 1-18, September.
    11. Jing Yang & Disheng Yi & Jingjing Liu & Yusi Liu & Jing Zhang, 2019. "Spatiotemporal Change Characteristics of Nodes’ Heterogeneity in the Directed and Weighted Spatial Interaction Networks: Case Study within the Sixth Ring Road of Beijing, China," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    12. Spyridon Spyratos & Demetris Stathakis, 2018. "Evaluating the services and facilities of European cities using crowdsourced place data," Environment and Planning B, , vol. 45(4), pages 733-750, July.
    13. Jun Li & Yuan Zhang & Qiming Qin & Yueguan Yan, 2017. "Investigating the Impact of Human Activity on Land Use/Cover Change in China’s Lijiang River Basin from the Perspective of Flow and Type of Population," Sustainability, MDPI, vol. 9(3), pages 1-16, March.
    14. Li, Mengya & Kwan, Mei-Po & Wang, Fahui & Wang, Jun, 2018. "Using points-of-interest data to estimate commuting patterns in central Shanghai, China," Journal of Transport Geography, Elsevier, vol. 72(C), pages 201-210.
    15. Feng Hu & Wei Liu & Junyu Lu & Chengpeng Song & Yuan Meng & Jun Wang & Hanfa Xing, 2020. "Urban Function as a New Perspective for Adaptive Street Quality Assessment," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    16. Yandong Wang & Teng Wang & Ming-Hsiang Tsou & Hao Li & Wei Jiang & Fengqin Guo, 2016. "Mapping Dynamic Urban Land Use Patterns with Crowdsourced Geo-Tagged Social Media (Sina-Weibo) and Commercial Points of Interest Collections in Beijing, China," Sustainability, MDPI, vol. 8(11), pages 1-19, November.
    17. Quanyi Zheng & Xiaolong Zhao & Mengxiao Jin, 2019. "Research on Urban Public Green Space Planning Based on Taxi Data: A Case Study on Three Districts of Shenzhen, China," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    18. Shi, Kaifang & Yu, Bailang & Huang, Chang & Wu, Jianping & Sun, Xiufeng, 2018. "Exploring spatiotemporal patterns of electric power consumption in countries along the Belt and Road," Energy, Elsevier, vol. 150(C), pages 847-859.
    19. Xucai Zhang & Yeran Sun & Ting On Chan & Ying Huang & Anyao Zheng & Zhang Liu, 2021. "Exploring Impact of Surrounding Service Facilities on Urban Vibrancy Using Tencent Location-Aware Data: A Case of Guangzhou," Sustainability, MDPI, vol. 13(2), pages 1-23, January.
    20. Jintong Tang & Ximeng Cheng & Aihan Liu & Qian Huang & Yinsheng Zhou & Zhou Huang & Yu Liu & Liyan Xu, 2024. "Inferring “high-frequent†mixed urban functions from telecom traffic," Environment and Planning B, , vol. 51(8), pages 1775-1793, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2809-:d:760608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.