IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i5p2498-d755170.html
   My bibliography  Save this article

Predictive Analysis of Healthcare-Associated Blood Stream Infections in the Neonatal Intensive Care Unit Using Artificial Intelligence: A Single Center Study

Author

Listed:
  • Emma Montella

    (Department of Public Health, University of Naples “Federico”, 80125 Naples, Italy)

  • Antonino Ferraro

    (Department of Information Technology and Electrical Engineering, University of Naples “Federico”, Via Claudio 21, 80125 Naples, Italy)

  • Giancarlo Sperlì

    (Department of Information Technology and Electrical Engineering, University of Naples “Federico”, Via Claudio 21, 80125 Naples, Italy
    CINI-ITEM National Lab, Complesso Universitario di Monte S. Angelo Via Cinthia Edificio Centri Comuni, 80126 Naples, Italy)

  • Maria Triassi

    (Department of Public Health, University of Naples “Federico”, 80125 Naples, Italy
    Interdepartmental Center for Research in Healthcare Management and Innovation in Healthcare (CIRMIS), University of Naples “Federico”, 80131 Naples, Italy)

  • Stefania Santini

    (Department of Information Technology and Electrical Engineering, University of Naples “Federico”, Via Claudio 21, 80125 Naples, Italy
    CINI-ITEM National Lab, Complesso Universitario di Monte S. Angelo Via Cinthia Edificio Centri Comuni, 80126 Naples, Italy)

  • Giovanni Improta

    (Department of Public Health, University of Naples “Federico”, 80125 Naples, Italy
    Interdepartmental Center for Research in Healthcare Management and Innovation in Healthcare (CIRMIS), University of Naples “Federico”, 80131 Naples, Italy)

Abstract

Background: Neonatal infections represent one of the six main types of healthcare-associated infections and have resulted in increasing mortality rates in recent years due to preterm births or problems arising from childbirth. Although advances in obstetrics and technologies have minimized the number of deaths related to birth, different challenges have emerged in identifying the main factors affecting mortality and morbidity. Dataset characterization: We investigated healthcare-associated infections in a cohort of 1203 patients at the level III Neonatal Intensive Care Unit (ICU) of the “Federico II” University Hospital in Naples from 2016 to 2020 (60 months). Methods: The present paper used statistical analyses and logistic regression to identify an association between healthcare-associated blood stream infection (HABSIs) and the available risk factors in neonates and prevent their spread. We designed a supervised approach to predict whether a patient suffered from HABSI using seven different artificial intelligence models. Results: We analyzed a cohort of 1203 patients and found that birthweight and central line catheterization days were the most important predictors of suffering from HABSI. Conclusions: Our statistical analyses showed that birthweight and central line catheterization days were significant predictors of suffering from HABSI. Patients suffering from HABSI had lower gestational age and birthweight, which led to longer hospitalization and umbilical and central line catheterization days than non-HABSI neonates. The predictive analysis achieved the highest Area Under Curve (AUC), accuracy and F1-macro score in the prediction of HABSIs using Logistic Regression (LR) and Multi-layer Perceptron (MLP) models, which better resolved the imbalanced dataset (65 infected and 1038 healthy).

Suggested Citation

  • Emma Montella & Antonino Ferraro & Giancarlo Sperlì & Maria Triassi & Stefania Santini & Giovanni Improta, 2022. "Predictive Analysis of Healthcare-Associated Blood Stream Infections in the Neonatal Intensive Care Unit Using Artificial Intelligence: A Single Center Study," IJERPH, MDPI, vol. 19(5), pages 1-9, February.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2498-:d:755170
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/5/2498/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/5/2498/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arianna Scala & Alfonso Maria Ponsiglione & Ilaria Loperto & Antonio Della Vecchia & Anna Borrelli & Giuseppe Russo & Maria Triassi & Giovanni Improta, 2021. "Lean Six Sigma Approach for Reducing Length of Hospital Stay for Patients with Femur Fracture in a University Hospital," IJERPH, MDPI, vol. 18(6), pages 1-13, March.
    2. Giovanni Improta & Giuseppe Converso & Teresa Murino & Mosè Gallo & Antonietta Perrone & Maria Romano, 2019. "Analytic Hierarchy Process (AHP) in Dynamic Configuration as a Tool for Health Technology Assessment (HTA): The Case of Biosensing Optoelectronics in Oncology," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(05), pages 1533-1550, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arianna Scala & Ilaria Loperto & Maria Triassi & Giovanni Improta, 2022. "Risk Factors Analysis of Surgical Infection Using Artificial Intelligence: A Single Center Study," IJERPH, MDPI, vol. 19(16), pages 1-10, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovanni Improta & Anna Borrelli & Maria Triassi, 2022. "Machine Learning and Lean Six Sigma to Assess How COVID-19 Has Changed the Patient Management of the Complex Operative Unit of Neurology and Stroke Unit: A Single Center Study," IJERPH, MDPI, vol. 19(9), pages 1-19, April.
    2. Arianna Scala & Teresa Angela Trunfio & Lucia De Coppi & Giovanni Rossi & Anna Borrelli & Maria Triassi & Giovanni Improta, 2022. "Regression Models to Study the Total LOS Related to Valvuloplasty," IJERPH, MDPI, vol. 19(5), pages 1-13, March.
    3. Arianna Scala & Ilaria Loperto & Maria Triassi & Giovanni Improta, 2022. "Risk Factors Analysis of Surgical Infection Using Artificial Intelligence: A Single Center Study," IJERPH, MDPI, vol. 19(16), pages 1-10, August.
    4. Ana-Beatriz Hernández-Lara & Maria-Victoria Sánchez-Rebull & Angels Niñerola, 2021. "Six Sigma in Health Literature, What Matters?," IJERPH, MDPI, vol. 18(16), pages 1-13, August.
    5. Nicola Wolfe & Seán Paul Teeling & Marie Ward & Martin McNamara & Liby Koshy, 2021. "Operation Note Transformation: The Application of Lean Six Sigma to Improve the Process of Documenting the Operation Note in a Private Hospital Setting," IJERPH, MDPI, vol. 18(22), pages 1-16, November.
    6. Teresa Angela Trunfio & Anna Borrelli & Giovanni Improta, 2022. "Is It Possible to Predict the Length of Stay of Patients Undergoing Hip-Replacement Surgery?," IJERPH, MDPI, vol. 19(10), pages 1-16, May.
    7. Sandeep Jadhav & Ahmed Imran & Marjia Haque, 2023. "Application of six sigma and the system thinking approach in COVID-19 operation management: a case study of the victorian aged care response centre (VACRC) in Australia," Operations Management Research, Springer, vol. 16(1), pages 531-553, March.
    8. Carlo Ricciardi & Giovanni Dell’Aversana Orabona & Ilaria Picone & Imma Latessa & Antonella Fiorillo & Alfonso Sorrentino & Maria Triassi & Giovanni Improta, 2021. "A Health Technology Assessment in Maxillofacial Cancer Surgery by Using the Six Sigma Methodology," IJERPH, MDPI, vol. 18(18), pages 1-16, September.
    9. Arianna Scala & Antonio D’Amore & Maria Pia Mannelli & Mario Mensorio & Giovanni Improta, 2024. "Management of Patients with Colorectal Cancer through Fast-Track Surgery," IJERPH, MDPI, vol. 21(9), pages 1-16, September.
    10. Alfonso Maria Ponsiglione & Francesco Amato & Santolo Cozzolino & Giuseppe Russo & Maria Romano & Giovanni Improta, 2022. "A Hybrid Analytic Hierarchy Process and Likert Scale Approach for the Quality Assessment of Medical Education Programs," Mathematics, MDPI, vol. 10(9), pages 1-20, April.
    11. Sinead Moffatt & Catherine Garry & Hannah McCann & Sean Paul Teeling & Marie Ward & Martin McNamara, 2022. "The Use of Lean Six Sigma Methodology in the Reduction of Patient Length of Stay Following Anterior Cruciate Ligament Reconstruction Surgery," IJERPH, MDPI, vol. 19(3), pages 1-18, January.
    12. Agnieszka Zdęba-Mozoła & Remigiusz Kozłowski & Anna Rybarczyk-Szwajkowska & Tomasz Czapla & Michał Marczak, 2023. "Implementation of Lean Management Tools Using an Example of Analysis of Prolonged Stays of Patients in a Multi-Specialist Hospital in Poland," IJERPH, MDPI, vol. 20(2), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2498-:d:755170. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.