Author
Listed:
- Carina Aguilar Martín
(Primary Care Intervention Evaluation Research Group (GAVINA Research Group), IDIAPJGol Terres de l’Ebre, 43500 Catalonia, Spain
Terres de l’Ebre Research Support Unit, Foundation University Institute for Primary Health Care Research Jordi Gol i Gurina (IDIAPJGol), 43500 Catalonia, Spain
Unitat d’Avaluació, Direcció d’Atenció Primària Terres de l’Ebre, Institut Català de la Salut, 43500 Catalonia, Spain
Co-first author: These authors, C. Aguilar Martín and M. R. Dalmau Llorca, contributed equally to this work.)
- Mª Rosa Dalmau Llorca
(Primary Care Intervention Evaluation Research Group (GAVINA Research Group), IDIAPJGol Terres de l’Ebre, 43500 Catalonia, Spain
Equip d’Atenció Primària Terres de l’Ebre, Institut Català de la Salut, 43500 Catalonia, Spain
Campus Terres de l’Ebre, Universitat Rovira i Virgili, 43500 Catalonia, Spain
Co-first author: These authors, C. Aguilar Martín and M. R. Dalmau Llorca, contributed equally to this work.)
- Elisabet Castro Blanco
(Primary Care Intervention Evaluation Research Group (GAVINA Research Group), IDIAPJGol Terres de l’Ebre, 43500 Catalonia, Spain
Campus Terres de l’Ebre, Universitat Rovira i Virgili, 43500 Catalonia, Spain)
- Noèlia Carrasco-Querol
(Primary Care Intervention Evaluation Research Group (GAVINA Research Group), IDIAPJGol Terres de l’Ebre, 43500 Catalonia, Spain
Terres de l’Ebre Research Support Unit, Foundation University Institute for Primary Health Care Research Jordi Gol i Gurina (IDIAPJGol), 43500 Catalonia, Spain
Unitat de Recerca, Gerència Territorial Terres de l’Ebre, Institut Català de la Salut, 43500 Catalonia, Spain)
- Zojaina Hernández Rojas
(Primary Care Intervention Evaluation Research Group (GAVINA Research Group), IDIAPJGol Terres de l’Ebre, 43500 Catalonia, Spain
Equip d’Atenció Primària Terres de l’Ebre, Institut Català de la Salut, 43500 Catalonia, Spain
Campus Terres de l’Ebre, Universitat Rovira i Virgili, 43500 Catalonia, Spain)
- Emma Forcadell Drago
(Primary Care Intervention Evaluation Research Group (GAVINA Research Group), IDIAPJGol Terres de l’Ebre, 43500 Catalonia, Spain
Equip d’Atenció Primària Terres de l’Ebre, Institut Català de la Salut, 43500 Catalonia, Spain)
- Dolores Rodríguez Cumplido
(Primary Care Intervention Evaluation Research Group (GAVINA Research Group), IDIAPJGol Terres de l’Ebre, 43500 Catalonia, Spain
Institut Català de la Salut, Hospital Universitari de Bellvitge, 08907 Catalonia, Spain)
- Alessandra Queiroga Gonçalves
(Primary Care Intervention Evaluation Research Group (GAVINA Research Group), IDIAPJGol Terres de l’Ebre, 43500 Catalonia, Spain
Terres de l’Ebre Research Support Unit, Foundation University Institute for Primary Health Care Research Jordi Gol i Gurina (IDIAPJGol), 43500 Catalonia, Spain
Unitat Docent de Medicina de Familia i Comunitària, Tortosa-Terres de l’Ebre, Institut Català de la Salut, 43500 Catalonia, Spain
Co-senior authors: C. Aguilar Martín, M. R. Dalmau Llorca, A. Q. Gonçalves and J. Fernández Sáez.)
- José Fernández-Sáez
(Primary Care Intervention Evaluation Research Group (GAVINA Research Group), IDIAPJGol Terres de l’Ebre, 43500 Catalonia, Spain
Terres de l’Ebre Research Support Unit, Foundation University Institute for Primary Health Care Research Jordi Gol i Gurina (IDIAPJGol), 43500 Catalonia, Spain
Campus Terres de l’Ebre, Universitat Rovira i Virgili, 43500 Catalonia, Spain
Unitat de Recerca, Gerència Territorial Terres de l’Ebre, Institut Català de la Salut, 43500 Catalonia, Spain)
Abstract
Introduction: Health authorities use different systems of influenza surveillance. Sentinel networks, which are recommended by the World Health Organization, provide information on weekly influenza incidence in a monitored population, based on laboratory-confirmed cases. In Catalonia there is a public website, DiagnostiCat, that publishes the number of weekly clinical diagnoses at the end of each week of disease registration, while the sentinel network publishes its reports later. The objective of this study was to determine whether there is concordance between the number of cases of clinical diagnoses and the number of confirmed cases of influenza, in order to evaluate the predictive potential of a clinical diagnosis-based system. Methods: Population-based ecological time series study in Catalonia. The period runs from the 2010–2011 to the 2018–2019 season. The concordance between the clinical diagnostic cases and the confirmed cases was evaluated. The degree of agreement and the concordance were analysed using Bland–Altman graphs and intraclass correlation coefficients. Results: There was greater concordance between the clinical diagnoses and the sum of the cases confirmed outside and within the sentinel network than between the diagnoses and the confirmed sentinel cases. The degree of agreement was higher when influenza rates were low. Conclusions: There is concordance between the clinical diagnosis and the confirmed cases of influenza. Registered clinical diagnostic cases could provide a good alternative to traditional surveillance, based on case confirmation. Cases of clinical diagnosis of influenza may have the potential to predict the onset of annual influenza epidemics.
Suggested Citation
Carina Aguilar Martín & Mª Rosa Dalmau Llorca & Elisabet Castro Blanco & Noèlia Carrasco-Querol & Zojaina Hernández Rojas & Emma Forcadell Drago & Dolores Rodríguez Cumplido & Alessandra Queiroga Gonç, 2022.
"Concordance between the Clinical Diagnosis of Influenza in Primary Care and Epidemiological Surveillance Systems (PREVIGrip Study),"
IJERPH, MDPI, vol. 19(3), pages 1-12, January.
Handle:
RePEc:gam:jijerp:v:19:y:2022:i:3:p:1263-:d:731538
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
- Mohammed A. A. Al-qaness & Ahmed A. Ewees & Hong Fan & Mohamed Abd Elaziz, 2020.
"Optimized Forecasting Method for Weekly Influenza Confirmed Cases,"
IJERPH, MDPI, vol. 17(10), pages 1-12, May.
- Tatiana Petukhova & Davor Ojkic & Beverly McEwen & Rob Deardon & Zvonimir Poljak, 2018.
"Assessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza,"
PLOS ONE, Public Library of Science, vol. 13(6), pages 1-17, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:3:p:1263-:d:731538. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.