IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i23p16204-d992786.html
   My bibliography  Save this article

Immobilization of Pb and Zn in Contaminated Soil Using Alumina–Silica Nano-Amendments Synthesized from Coal Fly Ash

Author

Listed:
  • Chang Lei

    (School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512005, China)

  • Hao Huang

    (School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512005, China)

  • Haoxin Ye

    (School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512005, China)

  • Zhiping Fu

    (School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512005, China)

  • Peipei Peng

    (School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512005, China)

  • Shaoqing Zhang

    (School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512005, China)

  • Laishou Long

    (School of Chemistry and Civil Engineering, Shaoguan University, Shaoguan 512005, China)

Abstract

To apply coal fly ash to the remediation of heavy-metal-contaminated soil, an alumina–silica nano-amendment (ASNA) was synthesized from coal fly ash and was used for the immobilization of lead and zinc in contaminated soil. The investigation on the synthesis of the ASNA shows that the ASNA can be obtained under a roasting temperature of 700 °C, a ratio of alkali to coal fly ash of 1.2:1, and a molar ratio of silicon to aluminum of 1:1. The ASNA could increase the soil pH and cation exchange capacity (CEC) and decrease the bioavailability of Pb and Zn. When the ASNA addition increased from 0 to 2%, the bioavailability (extracted by CaCl 2 ) of Pb and Zn decreased by 47% and 72%, respectively. Moreover, the addition of the ASNA facilitated the transformation of Pb from a reducible fraction to oxidizable and residual fractions and Zn from an exchangeable fraction to a residual fraction. The correlation analysis and cluster analysis verify that the ASNA modulates the chemical speciation of heavy metals by increasing the soil’s CEC and pH, thereby immobilizing heavy metals. It is expected that this study can provide a new method for the remediation of Pb- and Zn-contaminated soil.

Suggested Citation

  • Chang Lei & Hao Huang & Haoxin Ye & Zhiping Fu & Peipei Peng & Shaoqing Zhang & Laishou Long, 2022. "Immobilization of Pb and Zn in Contaminated Soil Using Alumina–Silica Nano-Amendments Synthesized from Coal Fly Ash," IJERPH, MDPI, vol. 19(23), pages 1-13, December.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:16204-:d:992786
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/23/16204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/23/16204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maria Luiza F. M. Kede & Fabio V. Correia & Paulo F. Conceição & Sidney F. Salles Junior & Marcia Marques & Josino C. Moreira & Daniel V. Pérez, 2014. "Evaluation of Mobility, Bioavailability and Toxicity of Pb and Cd in Contaminated Soil Using TCLP, BCR and Earthworms," IJERPH, MDPI, vol. 11(11), pages 1-13, November.
    2. Jian Yu & Wenting He & Bin Liu, 2020. "Adsorption of Acid Orange Ⅱ with Two Step Modified Sepiolite: Optimization, Adsorption Performance, Kinetics, Thermodynamics and Regeneration," IJERPH, MDPI, vol. 17(5), pages 1-14, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Ferrans & Alexander Nilsson & Frank Schmieder & Divya Pal & Mahboubeh Rahmati-Abkenar & Marcia Marques & William Hogland, 2022. "Life Cycle Assessment of Management Scenarios for Dredged Sediments: Environmental Impacts Caused during Landfilling and Soil Conditioning," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    2. Xuexia Huang & Dinggui Luo & Xiangxin Chen & Lezhang Wei & Yu Liu & Qihang Wu & Tangfu Xiao & Xiaotao Mai & Guowei Liu & Lirong Liu, 2019. "Insights into Heavy Metals Leakage in Chelator-Induced Phytoextraction of Pb- and Tl-Contaminated Soil," IJERPH, MDPI, vol. 16(8), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:16204-:d:992786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.