IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i23p15446-d980289.html
   My bibliography  Save this article

Canada Goldenrod Invasion Regulates the Effects of Soil Moisture on Soil Respiration

Author

Listed:
  • Sixuan Xu

    (School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
    These authors contributed equally to this work.)

  • Kexin Li

    (School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
    These authors contributed equally to this work.)

  • Guanlin Li

    (Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Zhiyuan Hu

    (WM Environmental Molecular Diagnosis Co., Ltd., Suzhou 215558, China)

  • Jiaqi Zhang

    (Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China)

  • Babar Iqbal

    (School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China)

  • Daolin Du

    (School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China)

Abstract

Canada goldenrod ( Solidago canadensis L.) is considered one of the most deleterious and invasive species worldwide, and invasion of riparian wetlands by S. canadensis can reduce vegetation diversity and alter soil nutrient cycling. However, little is known about how S. canadensis invasion affects soil carbon cycle processes, such as soil respiration, in a riparian wetland. This study was conducted to investigate the effects of different degrees of S. canadensis invasion on soil respiration under different moisture conditions. Soil respiration rate (heterotrophic and autotrophic respiration) was measured using a closed-chamber method. S. canadensis invasion considerably reduced soil respiration under all moisture conditions. The inhibition effect on autotrophic respiration was higher than that on heterotrophic respiration. The water level gradient affects the soil autotrophic respiration, thereby affecting the soil respiration rate. The changes in soil respiration may be related to the alteration in the effective substrate of the soil substrate induced by the invasion of S. canadensis . While the effects of S. canadensis invasion were regulated by the fluctuation in moisture conditions. Our results implied that S. canadensis invasion could reduce the soil respiration, which further potentially affect the carbon sequestration in the riparian wetlands. Thus, the present study provided a reference for predicting the dynamics of carbon cycling during S. canadensis invasion and constituted a scientific basis for the sustainable development and management of riparian wetlands invaded by alien plants.

Suggested Citation

  • Sixuan Xu & Kexin Li & Guanlin Li & Zhiyuan Hu & Jiaqi Zhang & Babar Iqbal & Daolin Du, 2022. "Canada Goldenrod Invasion Regulates the Effects of Soil Moisture on Soil Respiration," IJERPH, MDPI, vol. 19(23), pages 1-12, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:15446-:d:980289
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/23/15446/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/23/15446/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jeong Soo Park & Donghui Choi & Youngha Kim, 2020. "Potential Distribution of Goldenrod ( Solidago altissima L.) during Climate Change in South Korea," Sustainability, MDPI, vol. 12(17), pages 1-11, August.
    2. Zhiyuan Hu & Jiating Li & Kangwei Shi & Guangqian Ren & Zhicong Dai & Jianfan Sun & Xiaojun Zheng & Yiwen Zhou & Jiaqi Zhang & Guanlin Li & Daolin Du, 2021. "Effects of Canada Goldenrod Invasion on Soil Extracellular Enzyme Activities and Ecoenzymatic Stoichiometry," Sustainability, MDPI, vol. 13(7), pages 1-13, March.
    3. Xiongwen Chen & Wilfred Post & Richard Norby & Aimée Classen, 2011. "Modeling soil respiration and variations in source components using a multi-factor global climate change experiment," Climatic Change, Springer, vol. 107(3), pages 459-480, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulina Bączek & Aleksandra Halarewicz & Daniel Pruchniewicz & Magda Podlaska & Dorota Kawałko, 2023. "Soil Properties of Fallow Land Invaded by Black Cherry ( Padus serotina (Ehrh.) Borkh.)," Agriculture, MDPI, vol. 13(11), pages 1-12, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiyuan Hu & Jiating Li & Kangwei Shi & Guangqian Ren & Zhicong Dai & Jianfan Sun & Xiaojun Zheng & Yiwen Zhou & Jiaqi Zhang & Guanlin Li & Daolin Du, 2021. "Effects of Canada Goldenrod Invasion on Soil Extracellular Enzyme Activities and Ecoenzymatic Stoichiometry," Sustainability, MDPI, vol. 13(7), pages 1-13, March.
    2. Elsiddig A. E. Elsheikh & Ali El-Keblawy & Kareem A. Mosa & Anthony I. Okoh & Ismail Saadoun, 2021. "Role of Endophytes and Rhizosphere Microbes in Promoting the Invasion of Exotic Plants in Arid and Semi-Arid Areas: A Review," Sustainability, MDPI, vol. 13(23), pages 1-21, November.
    3. Guanlin Li & Jingquan Wang & Jiaqi Zhang & Yingnan Li & Enxi Liu & Yuechen Yu & Babar Iqbal & Zhicong Dai & Hui Jia & Jian Li & Daolin Du, 2021. "Effects of Experimental Warming and Canada Goldenrod Invasion on the Diversity and Function of the Soil Nematode Community," Sustainability, MDPI, vol. 13(23), pages 1-10, November.
    4. Egor A. Dyukarev & Sergey A. Kurakov, 2023. "Response of Bare Soil Respiration to Air and Soil Temperature Variations According to Different Models: A Case Study of an Urban Grassland," Land, MDPI, vol. 12(5), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:23:p:15446-:d:980289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.