Author
Listed:
- Lynn Moeng-Mahlangu
(Physical Activity, Sport and Recreation Research Focus Area (PhASRec), Faculty of Health Sciences, North-West University, Potchefstroom 2531, South Africa)
- Makama A. Monyeki
(Physical Activity, Sport and Recreation Research Focus Area (PhASRec), Faculty of Health Sciences, North-West University, Potchefstroom 2531, South Africa)
- John J. Reilly
(Physical Activity for Health Group, School of Psychological Sciences and Health, University of Strathclyde, Glasgow G1 1XQ, UK)
- Herculina S. Kruger
(Centre of Excellence for Nutrition, North-West University, Potchefstroom 2531, South Africa)
Abstract
Body composition measurement is useful for assessing percentage body fat (%BF) and medical diagnosis, monitoring disease progression and response to treatment, and is essential in assessing nutritional status, especially in children. However, finding accurate and precise techniques remains a challenge. The study compares %BF determined by bioelectrical impedance analysis (BIA) and calculated from available prediction equations based on skinfolds in young South African children. A cross-sectional study performed on 202 children (83 boys and 119 girls) aged 6–8 years. Height and weight, triceps and subscapular skinfolds were determined according to standard procedures. %BF was determined with BIA and three relevant available equations. SPSS analyzed the data using paired samples tests, linear regression, and Bland–Altman plots. Significant paired mean differences were found for BIA and Slaughter (t 201 = 33.896, p < 0.001), Wickramasinghe (t 201 = 4.217, p < 0.001), and Dezenberg (t 201 = 19.910, p < 0.001). For all of the equations, the standards for evaluating prediction errors (SEE) were above 5. The Bland–Altman plots show relatively large positive and negative deviations from the mean difference lines and trends of systematic under- and over-estimation of %BF across the %BF spectrum. All three equations demonstrated a smaller %BF than the %BF measured by BIA, but the difference was smallest with the Wickramasinghe equation. In comparison, a poor SEE was found in the three %BF predicted equations and %BF derived from BIA. As such, an age-specific %BF equation incorporating criterion methods of deuterium dilution techniques or ‘gold-standard’ methods is needed to refute these findings. However, in the absence of developed %BF equations or ‘gold-standard’ methods, the available prediction equations are still desirable.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14531-:d:964372. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.