IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p14386-d962025.html
   My bibliography  Save this article

Safety Risk Estimation of Construction Project Based on Energy Transfer Model and System Dynamics: A Case Study of Collapse Accident in China

Author

Listed:
  • Yongcheng Zhang

    (School of Management Engineering, Huaiyin Institute of Technology, Huai’an 223003, China)

  • Xuejiao Xing

    (School of Finance, Zhongnan University of Economics and Law, Wuhan 430074, China
    School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Maxwell Fordjour Antwi-Afari

    (Department of Civil Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK)

  • Mingqing Wu

    (School of Economics and Management, Nanjing Tech University, Nanjing 211816, China)

Abstract

Analyzing and understanding the occurrence and evolution mechanisms of construction accidents are important for construction safety management. This study proposed a hybrid approach of integrating the energy transfer model (ETM) and system dynamics (SD) theory to delineate the entire evolution stage of the construction accident. Specifically, the Fengcheng Power Plant construction platform collapse accident (FPCA) was taken as a practical case study. First, the ETM is applied to demonstrate the evolving nature of the accident. Then, the network of the accident-causing factors is constructed using the SD theory to analyze the dynamic change characteristics. The results indicate that the accident was caused by risk factors with complex interactions at the management level. An energy constraint failure occurred when the transfer of dangerous energy transpired at the physical entity level, inducing the event. The proposed approach can provide a useful reference for safety risk estimation and management in future major construction projects.

Suggested Citation

  • Yongcheng Zhang & Xuejiao Xing & Maxwell Fordjour Antwi-Afari & Mingqing Wu, 2022. "Safety Risk Estimation of Construction Project Based on Energy Transfer Model and System Dynamics: A Case Study of Collapse Accident in China," IJERPH, MDPI, vol. 19(21), pages 1-14, November.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14386-:d:962025
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/14386/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/14386/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ping Liu & Qiming Li & Jing Bian & Liangliang Song & Xiaer Xiahou, 2018. "Using Interpretative Structural Modeling to Identify Critical Success Factors for Safety Management in Subway Construction: A China Study," IJERPH, MDPI, vol. 15(7), pages 1-18, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoyan Jiang & Sai Wang & Jie Wang & Sainan Lyu & Martin Skitmore, 2020. "A Decision Method for Construction Safety Risk Management Based on Ontology and Improved CBR: Example of a Subway Project," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    2. Ping Liu & Yongtao Shang & Lei Zhang, 2023. "A Design for Safety (DFS) Framework for Automated Inspection Risks in Metro Stations by Integrating a Knowledge Base and Building Information Modeling," IJERPH, MDPI, vol. 20(6), pages 1-19, March.
    3. Bo Shao & Zhigen Hu & Dawei Liu, 2019. "Using Improved Principal Component Analysis to Explore Construction Accident Situations from the Multi-Dimensional Perspective: A Chinese Study," IJERPH, MDPI, vol. 16(18), pages 1-18, September.
    4. Małgorzata Jasiulewicz-Kaczmarek & Katarzyna Antosz & Ryszard Wyczółkowski & Małgorzata Sławińska, 2022. "Integrated Approach for Safety Culture Factor Evaluation from a Sustainability Perspective," IJERPH, MDPI, vol. 19(19), pages 1-30, September.
    5. Banus Kam Leung Low & Siu Shing Man & Alan Hoi Shou Chan & Saad Alabdulkarim, 2019. "Construction Worker Risk-Taking Behavior Model with Individual and Organizational Factors," IJERPH, MDPI, vol. 16(8), pages 1-13, April.
    6. Xiao-Hai Weng & Yu-Ming Zhu & Xiao-Yu Song & Naveed Ahmad, 2019. "Identification of Key Success Factors for Private Science Parks Established from Brownfield Regeneration: A Case Study from China," IJERPH, MDPI, vol. 16(7), pages 1-17, April.
    7. Ping Liu & Mengchu Xie & Jing Bian & Huishan Li & Liangliang Song, 2020. "A Hybrid PSO–SVM Model Based on Safety Risk Prediction for the Design Process in Metro Station Construction," IJERPH, MDPI, vol. 17(5), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14386-:d:962025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.