IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i20p13305-d943216.html
   My bibliography  Save this article

Laser Treatment Increases the Antimicrobial Efficacy of Cyanobacterial Extracts against Staphylococcus aureus (SA) and Methicillin-resistant Staphylococcus aureus (MRSA)

Author

Listed:
  • Haifa M. Al Naim

    (Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
    These authors contributed equally to this work.)

  • Nermin El Semary

    (Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
    Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Helwan, Cairo 11795, Egypt
    These authors contributed equally to this work.)

Abstract

Staphylococcus aureus (SA) and Methicillin-resistant Staphylococcus aureus (MRSA) are multidrug-resistant bacterial pathogens. A novel approach needs to be followed to combat these pathogens in an ecofriendly manner. Cyanobacterial extracts were previously proven to be affective as antimicrobial agents. To capitalize on this, laser treatments were used to increase their antimicrobial efficacy. Two cyanobacterial strains isolated from Al-Ahsa were identified using molecular methods. Their aqueous extracts were used in the antimicrobial bioassay for these two bacterial pathogens. The first group of aqueous extracts were exposed directly to laser treatment and used in antibacterial bioassay. In parallel, the cyanobacterial biomass of the two isolates was exposed to the laser, then aqueous extracts were prepared. The third group of extracts were not exposed to the laser and were used as a control. Time and distance were the factors tested as they affected the dose of the laser, both individually and in combination. In addition, accessory pigment estimation in extracts before and after laser exposure of extracts was also determined. The two cyanobacterial strains were identified as Thermoleptolyngbya sp. and Leptolyngbya sp. and the molecular analysis also confirmed the identity of pathogenic bacteria. The untreated cyanobacterial aqueous extracts had little effect against the two bacterial strains. In contrast, the extract directly exposed to the laser was significantly more effective, with an inhibition zone of 22.0 mm in the case of a time of 32 min and distance of 10 cm against S. aureus . Accessory pigment composition increased in extracts directly exposed to the laser. This is the first case report on the effect of lasers on enhancing the antimicrobial profile of cyanobacterial extracts against SA and MRSA bacterial pathogens, as well as enhancing accessory pigment content. The laser dose that was most effective was that of 32 min time and 10 cm distance of Thermoleptolyngbya sp. extract directly exposed to the laser, which highlights the importance of time for increasing the laser dose and consequently increasing its antimicrobial impact.

Suggested Citation

  • Haifa M. Al Naim & Nermin El Semary, 2022. "Laser Treatment Increases the Antimicrobial Efficacy of Cyanobacterial Extracts against Staphylococcus aureus (SA) and Methicillin-resistant Staphylococcus aureus (MRSA)," IJERPH, MDPI, vol. 19(20), pages 1-15, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:20:p:13305-:d:943216
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/20/13305/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/20/13305/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:20:p:13305-:d:943216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.