IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p12635-d932489.html
   My bibliography  Save this article

Detecting and Analyzing Suicidal Ideation on Social Media Using Deep Learning and Machine Learning Models

Author

Listed:
  • Theyazn H. H. Aldhyani

    (Applied College in Abqaiq, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia)

  • Saleh Nagi Alsubari

    (Department of Computer Science, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India)

  • Ali Saleh Alshebami

    (Applied College in Abqaiq, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia)

  • Hasan Alkahtani

    (College of Computer Science and Information Technology, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia)

  • Zeyad A. T. Ahmed

    (Department of Computer Science, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India)

Abstract

Individuals who suffer from suicidal ideation frequently express their views and ideas on social media. Thus, several studies found that people who are contemplating suicide can be identified by analyzing social media posts. However, finding and comprehending patterns of suicidal ideation represent a challenging task. Therefore, it is essential to develop a machine learning system for automated early detection of suicidal ideation or any abrupt changes in a user’s behavior by analyzing his or her posts on social media. In this paper, we propose a methodology based on experimental research for building a suicidal ideation detection system using publicly available Reddit datasets, word-embedding approaches, such as TF-IDF and Word2Vec, for text representation, and hybrid deep learning and machine learning algorithms for classification. A convolutional neural network and Bidirectional long short-term memory (CNN–BiLSTM) model and the machine learning XGBoost model were used to classify social posts as suicidal or non-suicidal using textual and LIWC-22-based features by conducting two experiments. To assess the models’ performance, we used the standard metrics of accuracy, precision, recall, and F1-scores. A comparison of the test results showed that when using textual features, the CNN–BiLSTM model outperformed the XGBoost model, achieving 95% suicidal ideation detection accuracy, compared with the latter’s 91.5% accuracy. Conversely, when using LIWC features, XGBoost showed better performance than CNN–BiLSTM.

Suggested Citation

  • Theyazn H. H. Aldhyani & Saleh Nagi Alsubari & Ali Saleh Alshebami & Hasan Alkahtani & Zeyad A. T. Ahmed, 2022. "Detecting and Analyzing Suicidal Ideation on Social Media Using Deep Learning and Machine Learning Models," IJERPH, MDPI, vol. 19(19), pages 1-16, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12635-:d:932489
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/12635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/12635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shaoxiong Ji & Celina Ping Yu & Sai-fu Fung & Shirui Pan & Guodong Long, 2018. "Supervised Learning for Suicidal Ideation Detection in Online User Content," Complexity, Hindawi, vol. 2018, pages 1-10, September.
    2. Naoki Masuda & Issei Kurahashi & Hiroko Onari, 2013. "Suicide Ideation of Individuals in Online Social Networks," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Pan & Xianbin Wang & Wenwei Zhou & Bowen Hang & Liwen Guo, 2023. "Linguistic Analysis for Identifying Depression and Subsequent Suicidal Ideation on Weibo: Machine Learning Approaches," IJERPH, MDPI, vol. 20(3), pages 1-12, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun Gu & Deyuan Chen & Xiaoqian Liu, 2022. "Suicide Possibility Scale Detection via Sina Weibo Analytics: Preliminary Results," IJERPH, MDPI, vol. 20(1), pages 1-11, December.
    2. Wei Pan & Xianbin Wang & Wenwei Zhou & Bowen Hang & Liwen Guo, 2023. "Linguistic Analysis for Identifying Depression and Subsequent Suicidal Ideation on Weibo: Machine Learning Approaches," IJERPH, MDPI, vol. 20(3), pages 1-12, February.
    3. Gisela Redondo-Sama & Teresa Morlà-Folch & Ana Burgués & Jelen Amador & Sveva Magaraggia, 2021. "Create Solidarity Networks: Dialogs in Reddit to Overcome Depression and Suicidal Ideation among Males," IJERPH, MDPI, vol. 18(22), pages 1-15, November.
    4. Matsuzawa, Ryo & Tanimoto, Jun & Fukuda, Eriko, 2017. "Properties of a new small-world network with spatially biased random shortcuts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 408-415.
    5. Michal Ptaszynski & Monika Zasko-Zielinska & Michal Marcinczuk & Gniewosz Leliwa & Marcin Fortuna & Kamil Soliwoda & Ida Dziublewska & Olimpia Hubert & Pawel Skrzek & Jan Piesiewicz & Paula Karbowska , 2021. "Looking for Razors and Needles in a Haystack: Multifaceted Analysis of Suicidal Declarations on Social Media—A Pragmalinguistic Approach," IJERPH, MDPI, vol. 18(22), pages 1-49, November.
    6. Joseph, Simmi Marina & Citraro, Salvatore & Morini, Virginia & Rossetti, Giulio & Stella, Massimo, 2023. "Cognitive network neighborhoods quantify feelings expressed in suicide notes and Reddit mental health communities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
    7. Dennis Sing-wing Wong & Sai-fu Fung, 2020. "Development of the Cybercrime Rapid Identification Tool for Adolescents," IJERPH, MDPI, vol. 17(13), pages 1-13, June.
    8. Cai Gao & Xin Lan & Xiaoge Zhang & Yong Deng, 2013. "A Bio-Inspired Methodology of Identifying Influential Nodes in Complex Networks," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-11, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12635-:d:932489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.